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Abstract

Motivation: Viruses infect, reprogram and kill microbes, leading to profound ecosystem consequences, from elem-
ental cycling in oceans and soils to microbiome-modulated diseases in plants and animals. Although metagenomic
datasets are increasingly available, identifying viruses in them is challenging due to poor representation and annota-
tion of viral sequences in databases.

Results: Here, we establish efam, an expanded collection of Hidden Markov Model (HMM) profiles that represent
viral protein families conservatively identified from the Global Ocean Virome 2.0 dataset. This resulted in 240
311 HMM profiles, each with at least 2 protein sequences, making efam >7-fold larger than the next largest, pan-
ecosystem viral HMM profile database. Adjusting the criteria for viral contig confidence from ‘conservative’ to
‘eXtremely Conservative’ resulted in 37 841 HMM profiles in our efam-XC database. To assess the value of this
resource, we integrated efam-XC into VirSorter viral discovery software to discover viruses from less-studied,
ecologically distinct oxygen minimum zone (OMZ) marine habitats. This expanded database led to an increase in
viruses recovered from every tested OMZ virome by �24% on average (up to �42%) and especially improved the
recovery of often-missed shorter contigs (<5 kb). Additionally, to help elucidate lesser-known viral protein func-
tions, we annotated the profiles using multiple databases from the DRAM pipeline and virion-associated meta-
proteomic data, which doubled the number of annotations obtainable by standard, single-database annotation
approaches. Together, these marine resources (efam and efam-XC) are provided as searchable, compressed
HMM databases that will be updated bi-annually to help maximize viral sequence discovery and study from any
ecosystem.
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Availability and implementation: The resources are available on the iVirus platform at (doi.org/10.25739/9vze-4143).

Contact: sullivan.948@osu.edu or liliana.cristina.moraru@uni-oldenburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Marine viruses infecting microbes are the most abundant biological
entities on the planet (Hendrix et al., 1999). With abundances of up
to 1011 per liter of seawater and approaching 2 � 105 viral popula-
tions or ‘species’ cataloged across the global ocean (Gregory et al.,
2019), viruses outnumber their hosts in abundance and potentially
in diversity (Ignacio-Espinoza, 2013). Viruses affect their host’s me-
tabolism, physiology, evolution and mortality and consequentially
alter global biogeochemical cycles. They are a major force driving
nutrient cycling (Suttle, 2007) and are thought to impact carbon
fluxes in the oceans, making them critical players in global climate
regulation (Guidi et al., 2016). Despite their impact, much of the
viral sequence space remains to be discovered. The primary method-
ology for discovery is high throughput metagenomic sequencing.
This is because the vast majority of viruses are not in culture, with
only 15% of the known prokaryotic phyla having cultured represen-
tatives at all (Roux et al., 2015b) and viral isolation is dependent on
the ability to grow their host. Additionally, the discovery and func-
tional annotation of viral contigs in cellular metagenomes—or even
in viral metagenomes, commonly characterized by a high non-viral
background (Roux et al, 2013)—utilizes tools that ultimately rely
upon known viral sequences.

Hence, several Hidden-Markov-Model (HMM) profile databases
have been developed and utilized for annotating viral genes for func-
tional characterization in metagenomes. HMM databases increase
the sensitivity of homology identification, which is suitable for what
is posited to be a broad and expansive viral sequence space (Soding,
2005). Existing databases were developed from (i) reference sequen-
ces of viral isolates and prophages (e.g. RefSeq), such as POGs/
pVOGs (Kristensen, 2013; Grazziotin, 2017), uPOGs (Zheng et al.,
2019), vFams (Skewes-Cox et al., 2014) and VOGDB (http://vogdb.
org/), (ii) reference sequences (e.g. UniProt Knowledgebase) of cellu-
lar or viral origin, such as Pfam (El-Gebali et al., 2019) and
TIGRFAMs (Haft et al., 2013) or (iii) viral reference sequences and
curated viral contigs from metagenomes, such as VPF (Paez-Espino
et al., 2016). However, all these databases underrepresent marine
viruses for the reasons outlined above.

Here, we developed efam and efam-XC, as conservative and ex-
tremely conservative databases, respectively, representing expanded
and annotated HMM profiles of viral protein families recovered
from the Global Ocean Virome 2.0 (GOV 2.0) dataset (Gregory
et al., 2019), to aid viral discovery and functional annotations, par-
ticularly from marine ecosystems. GOV2 is unprecedented with re-
gard to both sequencing depth and geographic scope including
sequences from �200K viral populations (approximately viral ‘spe-
cies’; Gregory et al., 2016, 2019; Roux et al., 2019a,b) from differ-
ent ocean layers and all major ocean basins, including geopolitically
challenging circumpolar sampling from the Arctic Ocean. Profile
annotations were performed using both sequence similarity-based,
confidence-scored bioinformatic methods and dedicated metapro-
teomic experiments designed to identify proteins associated with
highly purified viral particles, while performance tests revealed sig-
nificantly improved viral detection across multiple viromes.

2 Materials and methods—construction of efam
and efam-XC

2.1 Selection of highest-confidence viral contigs from

the GOV 2.0 dataset
The GOV2.0 dataset (Gregory et al., 2019), containing 848 507
viral contigs, was used as a source of novel marine viral genomes. A
length threshold of �5 kb was used for linear contigs, and of

�1.5 kb for circular ones. We re-analyzed all GOV 2.0 contigs using
three different viral prediction tools: VirSorter (Roux et al., 2015a),
DeepVirFinder (Ren et al., 2020) and MARVEL (Amgarten et al.,
2018). VirSorter was run in the ‘virome decontamination’ mode,
choosing the virome database as the reference. DeepVirFinder and
MARVEL were run using the default parameters. The strictest cut-
offs for viral contig detection were used to select sets of viral contigs
with the highest confidence scores according to each tool’s classifica-
tion model, as follows: (i) category 1 for VirSorter; (ii) score > 0.9
and P-value < 0.05 for DeepVirFinder and (iii) score > 90% for
MARVEL. Additionally, only contigs predicted by all three tools
(efam-XC) or by at least two of them (efam) were selected. Further,
each dataset was cleaned from non-viral regions by using CheckV’s
contamination module (Nayfach et al., 2020).

2.2 Protein prediction, decontamination and clustering
For each contig, the open-reading-frames (ORFs) and their corre-
sponding proteins were predicted using Prodigal in metagenomic
mode (Hyatt et al., 2010). The resulting proteins were then searched
against a RefSeq-database containing all bacterial and archaeal pro-
teins (access date: January 12, 2019) using Diamond BLASTP
(Buchfink et al., 2015). Sequences that showed high local identity
(percent identity > 95% with no minimum coverage requirement
and considering all the hits rather than just the top hit) to bacterial
and archaeal proteins were excluded. Exceptions were the proteins
with one of the following keywords in its annotation: ‘tail’, ‘capsid’,
‘portal’, ‘virus’, ‘virion’, ‘viral’, ‘phage’, ‘bacteriophage’ or ‘termi-
nase’, detected by using the string search (str_detect) function of
package ‘stringr’ (Wickham, 2017) in R (R Core Team, 2020).
Subsequently, the remaining proteins were dereplicated (at 100%
identity) using USEARCH (Edgar, 2010) with the –fastx_uniques
flag.

The selected protein sequences were clustered by (i) running an
all-against-all Diamond BLASTP search using the default parameters
(except for using the –more-sensitive flag), (ii) filtering out matches
with an evalue >10e-5, coverage <70% of the length of either se-
quence [to reduce regions with gaps in the multiple sequence align-
ment step below (sensu the vFams pipeline; Skewes-Cox et al.,
2014)], and with total length <50 amino acids for either sequence
(to minimize including mis-called proteins in the Prodigal step above
as well as incomplete protein sequences), (iii) performing a negative
log10 transformation on the e-values (to make the values directly
proportional to sequence similarity) and then, removing any non-
positive transformed e-values and applying a ceiling of 200 on the
remaining transformed e-values (i.e. treating all cases with an e-
value < e-200 the same) and (iv) clustering the matching protein
pairs (nodes) based on the final transformed e-values (edges) using
the graph-based clustering method in ClusterONE (Nepusz et al.,
2012). The default parameters for ClusterONE were used, except
for the minimum sequence number per cluster (-s 2). In order to
examine the impact of the clustering software on the final cluster
sets, we also clustered the proteins using MCL (Enright et al., 2002),
using the transformed e-values as edge weight and the default
parameters of MCL.

2.3 Creation of Hidden-Markov-Model profiles and

bioinformatic annotations
Sequences within each cluster were aligned using MUSCLE (Edgar,
2004), with a maximum number of iterations of 4 (–maxiters ¼ 4),
to balance accuracy and speed. Then, HMM profiles were built for
each of the multiple-sequence-alignments using hmmbuild, which is
part of the HMMER3 package (Eddy, 1998), with the default
parameters. All HMM profiles were compressed into a HMMER3
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searchable database, using hmmpress (from HMMER3 package).
This allows for quick searches of the database with hmmscan or
similar programs.

The proteins in each cluster were annotated using the ‘annotate_-
genes’ module of DRAM (Shaffer et al., 2020) against KEGG
(Kanehisa et al., 2016), UniRef90 (Suzek et al., 2015), Pfam (El-
Gebali et al., 2019) and VOGDB (http://vogdb.org/). Information
about each cluster, including cluster number, the number of proteins
within the cluster and the confidence/rank of the annotations are
included in the companion tables of the searchable HMM databases.

2.4 Annotations of virion-associated proteins using

metaproteomic data
A total of 48 viral metaproteomes from the Tara Oceans expeditions
were used to further annotate viral structural proteins in efam and
efam-XC. Twelve metaproteomes were previously generated from 4
samples (Brum et al., 2016) and 36 were generated in this study,
from 33 samples, and analyzed using the mass spectrometry plat-
form described in Huang et al. (2016). The sampling dates, locations
and depths for all the viral metaproteomes are provided in
(Supplementary Table S1). The metaproteome spectral files were
queried for the presence of GOV 2.0 proteins, as follows. Spectral
input files were first converted from .RAW to .mzML using
msConvert of ProteoWizard 3.0.10200 (Chambers et al., 2012),
using the default parameters. Spectral files were then searched using
MSGFPlus v2017.01.13 (Kim and Pevzner, 2014) against all protein
sequences from the GOV2.0. MSGFPlus searches were performed
with the following parameters: 620 ppm parent mass tolerance; iso-
tope error range (-ti ‘-1,2’); fully tryptic enzyme settings (-e 1 -ntt 2);
6 and 50 as the minimum and maximum peptide lengths to consider,
respectively; reporting only the Peptide-Spectral Matches (PSMs)
with the highest MSGF score (-n 1); conducting a parallel search
against a decoy protein database (-tda 1) for calculating the false dis-
covery rate (FDR). After conducting the searches, the FDR was cal-
culated as described previously (Woodcroft et al., 2018) and an FDR
cutoff of 1% was applied for each independent search.

All detected peptides (FDR � 1%) were mapped to the derepli-
cated set of proteins that comprise efam and efam-XC using the
PeptideToProteinMapper console app v1.3.6794 (omics.pnl.gov/
software/protein-coverage-summarizer) with flags ‘\G\H\A’. The set
of proteins and clusters that recruited each peptide were collapsed
and condensed in a single table, adding the statistics of these mapped
proteins and clusters and the DRAM annotations to each cluster
along with any additional information on these annotations, such as
whether it was previously annotated and/or had a structural annota-
tion. A cluster was considered previously annotated if its annota-
tions from KEGG, UniRef90, Pfam or VOGDB did not include any
the following keywords: ‘uncharacterized’, ‘hypothetical’, ‘no anno-
tation’ or ‘duf’ (short for domain of unknown function). Among
clusters with previous annotations, a cluster was considered to have
a previous structural annotation if it included any of the following
keywords: ‘coat’, ‘capsid’, ‘virion’, ‘head’, ‘neck’, ‘mu’, ‘fiber’, ‘tail’,
‘sheath’, ‘structur*’ (for structure or structural), ‘spike’, ‘baseplate’,
‘gp23’ (major capsid protein), ‘gp9’ (baseplate protein). All searches
against these keywords were case insensitive.

2.5 Benchmarking viral discovery in metagenomes with

efam-XC
In order to assess the potential contribution of efam-XC towards the
detection of unknown viral sequences, VirSorter was run on two sets
of marine metagenomes—both of which were not part of building
efam or efam-XC, and both are ecologically distinct from open
ocean viromes (Vik et al., 2021)—as well as two sets of non-marine
metagenomes from the well-studied human gut (Gregory et al.,
2020; Shkoporov et al., 2019) and less-studied permafrost soils
(Roux et al., 2019a). The first marine dataset comprised of 28
viromes, collected from the Eastern Tropical South Pacific oxygen
minimum zone (ESTP-OMZ; Vik et al., 2021). The second marine
dataset represented a deeply re-sequenced virome from waters of the
LineP transect (Hurwitz and Sullivan, 2013). The sampling dates,

locations and depths for all the samples in these two marine datasets
and the details about the samples from the gut and permafrost soil
datasets are provided in (Supplementary Table S2). VirSorter was
run twice on these metagenomes, one time using the built-in
‘Virome’ database and one time using a combined ‘Viromes þ efam-
XC’ database, while leaving all other parameters the same.
Subsequently, the number of identified viral contigs (considering all
of the VirSorter categories) was compared for each run. Finally, the
newly identified contigs (due to the addition of efam-XC) were
assessed for their viralness using DeepVirFinder, MARVEL and
CheckV.

3 Results and discussion

3.1 efam and efam-XC vastly extend the viral protein

sequence space organized into databases
Given our interest in maximizing marine viral protein sequence
space organization, we focused on generating efam and efam-XC
with data from the GOV 2.0 dataset (Gregory et al., 2019). GOV
2.0 includes 145 deeply sequenced viromes derived from water sam-
ples distributed throughout the world’s oceans, from pole to pole
and collected from the epi-, meso- and bathy-pelagic oceanic layers
(0–150 m, 150–1000 m, >2000 m, respectively). Therefore, it also
includes less sampled, but highly relevant marine environments, such

Fig. 1. Computational workflow used to construct efam and efam-XC. This pipeline

illustrates the major steps (rectangles) followed to generate efam and efam-XC.

Whenever applicable, software used in each step are shown in parentheses. Viral

sequences from GOV2.0 were re-analyzed by three different viral prediction tools

and extremely conservative subsets of these predictions were used downstream after

decontamination (i.e. removal of prokaryotic genes from any potential prophage

contig) by CheckV. Open reading frames (ORFs) on each viral contig were predicted

and the protein sequences that were 95% locally similar to bacterial or archaeal pro-

teins were removed. The remaining proteins were then dereplicated and clustered,

and the sequences within each cluster were multiple aligned. Finally, HMM profiles

were built out of each alignment and the profiles were pressed into a searchable

HMM database. Statistics for each step in the generation of the efam and efam-XC

are shown in the bottom right corner of each box
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as the Arctic Ocean and the deep ocean. In total, GOV2.0 contains
848 507 viral contigs with lengths ranging from 1.5 to 500 kb, and
an average of ~44 kb (Gregory et al., 2019). On these data we
applied 3 layers of stringent selection to maximize the confidently
identified viral content of efam and efam-XC (Fig. 1).

First, the GOV 2.0 dataset was subjected to three complementary
virus prediction tools, applying the most stringent cutoffs from each
tool (see Section 2). To build efam-XC, we used only those contigs
predicted by all the three tools (Fig. 2; see Section 2 for details). To
build efam, we used the contigs predicted by at least two of the three
tools to override the limitations of each individual tool. For ex-
ample, DeepVirFinder and MARVEL can capture shorter contigs
(Amgarten et al., 2018; Pratama et al., 2021; Ren et al., 2020), a
limitation of VirSorter. VirSorter, on the other hand, is better able to
capture viral contigs that have similar K-mer signatures to their
hosts, a limitation of DeepVirFinder, with lower false positive rates
than the other tools when mobile elements are present in datasets
(Pratama et al., 2021; Ren et al., 2020; Roux et al., 2015a). Out of
all GOV 2.0 contigs, only 29% (n¼250 021) met the stringent crite-
ria required for efam, and the number decreased to 4% (n¼33 115)
upon using the extremely stringent criteria for efam-XC (Fig. 2).
Most of the contigs that were exclusively recognized by only one
program at the highest confidence level were captured at a lower
confidence level by at least one of the other two programs (Fig. 2).
This leaves room for the inclusion of a larger number of viral contigs
into future versions of efam and efam-XC, as new algorithms arise
(e.g. VIBRANT, VirSorter2) that may improve viral detection and
confidence assessments (Guo et al., 2021; Kieft et al., 2020).
Notably, the stringent selection of contigs in this first layer did not
strongly bias the viral taxonomic groups included in the efam and
efam-XC databases towards Caudovirales, a viral order that is over-
represented in reference databases. This is because cross-referencing
efam and efam-XC viral contigs with the taxonomic classification
from GOV2.0 (Gregory et al., 2019) showed that only 18.4% and
27% of the input viral populations used in our databases, respective-
ly, come from Caudovirales (compared to the 9.8% Caudovirales
viral populations in GOV2.0). Hence, even though there is a slight
bias towards Caudovirales (especially for the efam-XC database),
our resources go beyond this order and should be of greater benefit
to the future users.

The second and third layers of selection leveraged detection of
contamination due to similarity to ‘prokaryotic’ databases.
Specifically, the selected contigs were subjected to decontamination
using CheckV (Nayfach et al., 2020), which identifies contaminants
based on detection of ‘prokaryote only’ proteins in HMM profile

searches, removing host genes from prophage contigs (Nayfach
et al., 2020) and potentially contigs with long stretches of Auxiliary
metabolic genes (Shaffer et al., 2020). This removed only ~3.2%
(n¼ 7 943) and ~0.05% (n¼16) potential prophage contigs from
efam and efam-XC, respectively, leaving 242 078 (efam) and 33 099
(efam-XC) contigs remaining (Fig. 1). Finally, a third layer of selec-
tion was applied at the protein level, to remove those that have local
similarity to bacterial or archaeal analogs (see Section 2) to avoid
recruiting those prokaryotic proteins by the final database due to
short sequence (e.g domain) matches. In total, 3 741 966 and 500
342 proteins were predicted from the remaining efam and efam-XC
contigs above, respectively. A local alignment search against bacter-
ial and archaeal proteins followed by the removal of strong matches
resulted in the removal of only ~0.04% (n¼1444) and ~0.03%
(n¼ 153) proteins from efam and efam-XC, respectively. This was
followed by a dereplication step (see Section 2) that resulted in the
removal of ~30% (n¼ 1 126 994) and ~19.5% (n¼ 97 231) pro-
teins, leaving 2 613 528 (efam) and 402 958 (efam-XC) unique pro-
teins remaining. Clustering these remaining proteins resulted in 240
311 (efam) and 37 841 (efam-XC) non-singletons protein clusters
(number of non-included singletons was 300 021 and 56 148, re-
spectively; Supplementary Table S3). The entire overview of this
workflow is outlined in (Fig. 1).

In their nascent iterations, efam and efam-XC represent a big
contribution to the viral protein sequence space organized into
HMM databases. In addition to better capturing previously underre-
presented marine viral sequences (see below), the sheer scale of the
databases was some of the largest in comparison to previously estab-
lished databases (Fig. 3 and Supplementary Table S4). Specifically,
efam-XC is currently the largest viral HMM profile database avail-
able; it exceeds VPF (from IMG/VR v.2.0); built from viral contigs
found in habitats throughout the planet (Paez-Espino et al., 2016),
uPOGs—the recently updated version of pVOGs (Zheng et al.,
2019), vFams (Skewes-Cox et al., 2014) and all other currently
known databases as listed in (Fig. 3). Notably, efam, which still con-
servatively captures viral sequence space, is more than 6-fold and 7-
fold larger than efam-XC and the next largest publicly available
database (VPF), respectively. To assess whether our new databases
were larger merely due to newer clustering algorithms or to the data
underlying them, we re-clustered our underlying efam and efam-XC
datasets using MCL, the clustering software used by VPF and

Fig. 2. Stringency levels used for selecting the viral contigs contributing to efam and

efam-XC. The Venn-diagram shows the extent of agreement between VirSorter,

DeepVirFinder and MARVEL at the highest stringency levels of each program. The

intersection of the highest stringency of at least two programs was used to construct

efam, while the intersection of the highest stringency of all three programs was used

to construct efam-XC

Fig. 3. Comparison of viral HMM database sizes and clustering algorithms. Number

of clusters (HMM profiles) in efam, efam-XC and currently available public data-

bases. SFams, another HMM profile database (Sharpton et al., 2012), was excluded

from our comparisons because it did not include any viral genomes in its construc-

tion. (Inset) Clustering structure produced by ClusterOne and MCL for efam (right)

and efam-XC (left). The number of clusters on the x-axes were capped at 200 000

(efam) and 20 000 (efam-XC) for visibility. ClusterOne generally produced longer

tails (more clusters) and larger clusters except for the highly ranked clusters. Since

ClusterOne was instructed to apply a ‘hair-trimming’ step after the clustering to re-

move dangling nodes and since the highly ranked clusters have more representative

sequences that are used to build the HMM profiles, we felt comfortable proceeding

with well-trimmed slightly smaller high-rank clusters. The number of protein

sequences used for clustering in each database is listed in (Supplementary Table S4)
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vFams. This revealed the same patterns of database size distribution
after re-clustering (Fig. 3). Thus, while ClusterOne produced slightly
more clusters than MCL for both efam and efam-XC and, in both
cases, most of the clusters produced by ClusterOne contained more
proteins (Fig. 3), it was not the dominant factor driving database
size in this study. Instead, the workflow that we introduced before
the protein clustering step (Fig. 1) to maximize the confidence in the
‘viralness’ of proteins from our new and highly diverse environmen-
tal viromes (Gregory et al., 2019), leveraged by modern viral identi-
fication tools that were largely not available to other databases at
the time of their inception (Fig. 2), allowed for establishing efam and
efam-XC as much expanded resources over existing databases. This
workflow, along with the workflow we introduced for annotating
the protein clusters both de novo and using multiple databases (see
below) differentiates efam and efam-XC from previously published
efforts. The methods described here can be directly applied to other
viromes and other ecosystems, perhaps with the exception of viral-
targeted metaproteomes (to annotate the protein clusters de novo)
that may be difficult to generate from more complex ecosystems
such as soils.

3.2 efam and efam-XC boost viral discovery in

metagenomes
The identification of viral contigs within metagenomes is largely reli-
ant on sequence similarity searches against a database of known
viral sequences. Therefore, we hypothesized that augmenting the ref-
erence databases of viral identification tools with efam or efam-XC
would improve detection sensitivity in new metagenomes. To assess
this, we augmented the ‘viromes’ database of VirSorter with efam-
XC, and found that, indeed, it consistently increased the number of
identified viral contigs across all virome samples collected from new
marine virome datasets from the Eastern Tropical South Pacific oxy-
gen minimum zone (ESTP-OMZ; Fig. 4) and the LineP transect (Fig.
5). These viromes were selected to be performance test samples be-
cause (i) they were not part of the contig pool used to establish efam
and efam-XC, and (ii) their viruses were only distantly related to
open ocean viruses (Vik et al., 2021). The percent increase in viral
contig recovery ranged from to 12.1% to 41.8% (with an average of
~24%) more contigs, depending on the sample. These new contigs
are unlikely to be microbial in origin because 88% (17 307 out of 19
654) of them were also called viral by DeepVirFinder (score> 0.7
and P-value<0.05) or MARVEL (>70% probability score), and
98.2% (19 306 out of 19 654) of them had 0% contamination (with
only 97 contigs having � 50% contamination) using CheckV. For
the LineP sample, a deeply sequenced sample collected off the coast
of British Columbia, the number of identified viral contigs increased
by 16.8%, while for non-marine samples [from the more-studied
human gut (n¼3) and less-studied permafrost soils (n¼ 3)], the

increase was on average 2.7% and 7.1%, respectively. Even though
the current version of the database proved useful to other ecosys-
tems, future versions will integrate viruses from a variety of ecosys-
tems, including a large number of novel viruses currently under
investigation by our group, to maximize discovery.

We next wanted to understand the nature of the new viruses
being identified, with particular focus on smaller contigs from the
deeply sequenced LineP virome. Due to the deeper sequencing, a
high number of smaller contigs were assembled for this sample,
which we examined further. First, integrating efam-XC into
VirSorter allowed for the detection of higher proportions of the
shorter contigs (Fig. 5), which has been demonstrated to be especial-
ly challenging to the current implementation of VirSorter (Ren et al.,
2020). However, short contigs, which constitute the majority of
metagenomic assemblies, facilitate viral gene ecology analyses and
recruit considerably more reads to viral sequences in viromes due to
their dominance in the assembly (Mende et al., 2012). In the deeply
sequenced LineP sample, we found that the percent increase in viral
recovery for contigs increased inversely with contig length (Fig. 5A).
This directly highlights the gaps in previous viral reference protein
sequence space that were traditionally compensated by VirSorter’s
ability to detect other well-known viral proteins on the longer con-
tigs. Finally, in the LineP sample, we observed that inclusion of
efam-XC data into VirSorter overall improved the quality of viral
prediction, because many low-confidence virus contigs (60% of ‘Cat
6’ viral contigs and 19.4% of ‘Cat 3’ viral contigs) were assigned to
the higher confidence categories ‘Cat 1’ or ‘Cat 2’ when using efam-
XC, with the remaining of Cat 6 (40%) reassigned to ‘Cat 3’ (Fig.
5B; Supplementary Table S5). Thus, the information efam-XC added
to such viral contigs increased the confidence calls by VirSorter’s
probabilistic model. Similarly, 56.3% of ‘Cat 5’ viral contigs—a
high confidence assignment by VirSorter for potential prophages—
were assigned to Cat 2, indicating that efam-XC leveraged
VirSorter’s ability to better resolve gene assignments at the edges of
the viral contigs and move them away from a possible prophage cat-
egory (Fig. 5B; Supplementary Table S5). Notably, a small percent-
age (2.9%) of the contigs detected by VirSorter were not detected or
downgraded to ‘Cat 3’ or ‘Cat 5’ after adding efam-XC
(Supplementary Table S5). This can be attributed to the higher sensi-
tivity of the HMM profiles in efam-XC than the default ‘hallmark’
gene profiles in VirSorter, impacting the call of ‘viral’ by VirSorter
(Roux et al., 2015a,b). The annotations that we provide here (see
below) should help with the updating of the ‘hallmark’ gene list in
future versions of VirSorter (e.g. VirSorter2; Guo et al., 2021). To
maximize recovery without updating VirSorter’s underlying data,
users should use VirSorter, then ‘VirSorter þ efam/efam-XC’ and
combine the results.

Fig. 4. efam-XC enables viral discovery in metagenomes. The paired dot plot (A)

shows that the number of recovered viral contigs from every single ETSP-OMZ

virome increased upon integrating efam-XC in VirSorter. As a result, the median

and average number of viral contigs recovered per sample (B) increased for the new

implementation of VirSorter, with the average increasing from 2904 to 3558 viral

contigs per sample (22.5% increase)

Fig. 5. efam-XC enhances the recovery of short viral contigs and increases confi-

dence level in identified contigs. (A) Percent increase in the number of viral contigs

recovered by VirSorter from the deeply sequenced LineP sample at different contig

sizes upon integrating efam-XC into VirSorter. (B) Percent decrease in the number

of low-confidence viral contigs (Cat 3 and Cat 6 of VirSorter) and the prophage cat-

egory (Cat 5) upon integrating efam-XC into VirSorter. The viral contigs that were

removed from these categories were added to the high-confidence categories (Cat 1

and Cat 2), except for 2 contigs from Cat 6 which were moved to Cat 3. The num-

bers next to each bin are from the VirSorter run before integrating efam-XC
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3.3 Improved viral profile functional annotation
Beyond identifying viruses, we hoped that the efam and efam-XC
databases could offer a step towards a centralized resource with
improved functional annotations. This would be critical for multiple
facets of virome research including identifying genes that hold the
potential to impact host metabolism during the virus-infected or
‘virocell’ stage that can alter biogeochemical cycles and ecosystem
outputs of a cell (e.g. Forterre, 2011; Howard-Varona et al., 2020;
Roux et al., 2016), as well as identifying viral hallmark genes that in-
crease the confidence in detecting previously unseen viruses in meta-
genomic sequences (see category 1 viruses in VirSorter; Roux et al.,
2015a). Problematically, viral gene annotation has proved to be
challenging as the field has a history of observing that most viral
genes in metagenomes typically cannot be annotated (Boratto et al.,
2020; Gregory et al., 2019; Roux et al., 2016, 2019b). Part of this
lack of annotation is due to challenges of scaling annotation, which
limits many studies to interrogating against only a single functional
annotation database like KEGG or VOGDB.

To provide an improved viral protein resource, we annotated
efam and efam-XC via (i) DRAM, a rigorous multi-database-
supported annotation pipeline designed for both microbial and viral
genomes, and (ii) identifying previously unknown virion-associated
proteins using mass-spectrometry-based metaproteomic measure-
ments made directly on viral particles (Brum et al., 2016). First,
DRAM annotated about one-third of the 240 311 (efam) and 37
841 (efam-XC) HMM profiles, with functional annotations (exclud-
ing ‘hypothetical proteins’, ‘uncharacterized proteins’ and ‘domains
of unknown functions’; see Section 2) provided for 33.5% (n¼80
431) and 38.3% (n¼14 492), respectively (available at: doi.org/
10.25739/9vze-4143). This almost doubled the number of annota-
tions retrievable using a single database such as KEGG (40 707 and
6819 for efam and efam-XC, respectively) or VOGDB (35 664 and
7136 for efam and efam-XC, respectively) at the same parameters
and cut-offs used in DRAM. Notably, there was a statistically sig-
nificant difference between the medians of the cluster sizes for the
annotated (median¼ 6) and unannotated (median¼3) clusters in
the efam database (P-value � 1e-04), suggesting that larger clusters
tend to be more amenable to annotation. For each protein cluster
giving rise to an HMM profile, all database annotations of the clus-
ter members were collected and collapsed to different levels of detail;
we provide detailed annotations, each with its source database speci-
fied, as well as the collective annotation(s) agreed upon by different
databases (both available at: doi.org/10.25739/9vze-4143). These
annotations (per predicted protein and per protein cluster) are for-
matted as companion metadata tables to the searchable efam and
efam-XC databases that can be queried by the cluster or protein ID.
Second, peptides from the viral metaproteomes mapped to ~3.7%
(n¼ 8847) and 8.6% (n¼ 3262) of the protein clusters of efam and
efam-XC, respectively. Therefore, these protein clusters and their
member protein sequences were annotated as virion-associated
(sensu Brum et al., 2016). This effort complemented DRAM annota-
tions (i.e. solved the cases that were not annotated by DRAM) by
adding a de novo annotation of ‘virion-associated protein’ to 33.7%
(n¼ 2984) and 28.1% (n¼ 916) of protein clusters matched by a
mass-spec detected peptide from efam and efam-XC, respectively
(see Section 2). Notably, for all cases in which DRAM provided an-
notation for a metaproteome-detected protein cluster (n¼5863 and
2346), very few (2.8% and 1.5% of the protein clusters for efam
and efam-XC, respectively) were annotated as something other than
‘structural protein’ (see Section 2 and metadata tables at doi.org/
10.25739/9vze-4143). This large concordance where DRAM and
metaproteomic evidence overlap boosts the confidence of the new
annotations inferred from the metaproteomes. We also provide these
metaproteome annotations in the companion metadata tables to
efam and efam-XC (available at: doi.org/10.25739/9vze-4143).

4 Conclusions

Microbiome researchers have helped bring out the myriad and sig-
nificant roles that microbes play in diverse ecosystems, with many of
these advances attributable to better ‘seeing’ microbes as sequencing

technologies illuminated the unseen majority often termed ‘micro-
bial dark matter’ (Rinke et al., 2013). A similar revolution is hap-
pening for viruses, whereby we are clearly immersed in a ‘third age
of phage’ (Mann, 2005) that is being complemented by advances
across all viral types with recent surveys in the oceans alone expos-
ing widespread and hidden endogenous viruses (Moniruzzaman
et al., 2020), non-tailed viruses (Kauffman et al., 2018), giant viruses
(Schulz et al., 2020) and RNA viruses (Wolf et al., 2020).
Complementarily, the toolkit to assess viral impacts is expanding
rapidly with recent advances including scalable assessment of resist-
ance mechanisms (Mutalik et al., 2020), multi-omics views of how
virus-infected cells change their ecosystem outputs (Howard-Varona
et al., 2020) and high-throughput detection of virus-host linkages
(Bickhart et al., 2019; Deng et al., 2014; D�zunková et al., 2019).
Here, by organizing and thoroughly annotating the largest ocean
virus survey data to date into the efam and efam-XC databases, we
hope to have taken one more step forward in these efforts to increas-
ingly expand our window into the wild to better see and understand
the roles that viruses play in complex communities. Future imple-
mentations of efam and efam-XC will benefit from expanding envir-
onmental diversity and adding evolutionary information (sensu
pVOGs), as well as integration into modern cyberinfrastructures and
databases (Bolduc et al., 2017). efam and efam-XC are planned to
be updated bi-annually as funding allows and will be kept freely ac-
cessible with no restrictions on use.
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