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SUMMARY
The gut microbiome profoundly affects human health and disease, and their infecting viruses are likely as
important, but oftenmissed because of reference database limitations. Here, we (1) built a human Gut Virome
Database (GVD) from 2,697 viral particle or microbial metagenomes from 1,986 individuals representing 16
countries, (2) assess its effectiveness, and (3) report a meta-analysis that reveals age-dependent patterns
across healthy Westerners. The GVD contains 33,242 unique viral populations (approximately species-level
taxa) and improves average viral detection rates over viral RefSeq and IMG/VR nearly 182-fold and 2.6-fold,
respectively. GVD meta-analyses show highly personalized viromes, reveal that inter-study variability from
technical artifacts is larger than any ‘‘disease’’ effect at the population level, and document how viral diversity
changes from human infancy into senescence. Together, this compact foundational resource, these stan-
dardization guidelines, and these meta-analysis findings provide a systematic toolkit to help maximize our
understanding of viral roles in health and disease.
INTRODUCTION

The human gut microbiome is now thought to play an integral

role in health and disease (Clemente et al., 2012; Gilbert et al.,

2018; Lynch and Pedersen, 2016; Schmidt et al., 2018).

Persistent alterations in the structure, diversity, and function

of gut microbial communities—dysbiosis—are increasingly

recognized as key contributors in the establishment and main-

tenance of a growing number of disease states (Frank et al.,

2007; Human Microbiome Project Consortium, 2012; Qin

et al., 2012), including obesity (Turnbaugh et al., 2006) and

cancer (Yoshimoto et al., 2013). Gut dysbiosis can develop

from complex interplays between host, cognate microbiota,

and external environmental factors (Mirzaei and Maurice,

2017; Shreiner et al., 2015). Within the gut microbial con-

sortium, the bacteriome has been the most extensively stud-

ied, where significant shifts in population dynamics have

been observed between healthy and diseased individuals

(Zhang et al., 2015). However, emerging views (Mirzaei and

Maurice, 2017; Ogilvie and Jones, 2015; Tetz et al., 2017)

suggest that the gut virome plays an important role in homeo-

static regulation and disease progression through multiple

interaction paths with the co-occurring bacteriome and even
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directly with human immune system components (Keen and

Dantas, 2018).

The first step in studying viruses in complex communities is

being able to detect them. Problematically, identifying viral

sequences in large, mixed-community datasets is notoriously

challenging. Because viruses lack a universal viral marker

(Rohwer and Edwards, 2002), as opposed to bacterial 16S

rRNA for example, human gut microbiome studies have most

commonly used sequence homology searches with BLAST or

Kraken (Wood and Salzberg, 2014) against NCBI viral Reference

Sequence Database (RefSeq) (https://www.ncbi.nlm.nih.gov/

genome/viruses/), ACLAME (a mobile element genome data-

base [Leplae et al., 2009]) or custom hidden Markov model

(HMM) databases (e.g., Prokaryotic Virus Orthologous Groups

[pVOGs] [Grazziotin et al., 2017]). Although there is now a suite

of virus identification tools available, including DeepVirFinder

(Ren et al., 2018), MARVEL (Amgarten et al., 2018), VIBRANT

(Kieft et al., 2019), and VirSorter (Roux et al., 2015), only the latter

has been used in the human gut microbiome literature to date

and all are dependent upon reference genome databases to

some degree. Further, once viruses are detected there is no

standard applied on how viral contigs translate into ‘‘species’’-

level sequences that are to be used as a ‘‘working’’ virus pool
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Figure 1. Overview of Studies Comprising the Gut Virome Database (GVD)

Global heatmap of theworld showing the number and distribution of studies per country. Eachwhite box represents a different continent and contains information

about the number of individuals sampled represented by the filled human pictograms and percentage of the total GVD sequencing effort for VLP-enriched (red pie

charts) and bulk metagenomes (yellow pie charts) of each country studied within that continent.

See also Table S1.
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for downstream analysis. The lack of viral analysis standards

could partly explain the estimated, highly variable (14%–87%)

(Mirzaei and Maurice, 2017) rates of virus detection between

studies. In addition, factors such as differences in sample pro-

cessing (Shkoporov et al., 2018), broad under-representation

of viral genome space in reference databases (Wang, 2020),

lack of culturable host gut microbes (Wang, 2020), and inter-in-

dividual variation add further variability (Shkoporov et al.,

2019). Further, although viral reference datasets are being

generated at unprecedented rates (Roux et al., 2019), these

new data are rarely incorporated for cross-comparisons, which

would inflate virus novelty in new datasets and/or leaves many

virus sequences undetected. In response to these challenges

and to enable virome-centric research in health and disease,

we sought to establish a comprehensive, easy-access database

dedicated to human gut viruses. This effort would enable future

gut microbiome research by augmenting virus detection and

helping establish processing standards for human gut viruses.

Here, we (1) collected and curated 2,697 human gut metage-

nomes previously studied for viruses and published as of

October 2019 to build the human Gut Virome Database (GVD),

(2) evaluated its utility against the best available databases (Na-

tional Center for Biotechnology Information [NCBI] viral RefSeq

and Integrated Microbial Genome/Virus [IMG/VR] [Paez-Espino

et al., 2018]), and (3) used it in meta-analyses to assess method-

ological effects and establish large-scale patterns of gut virome

diversity during the course of the human lifespan. The GVD’s

2,697 human gut metagenomic datasets derive from 32 studies

and encompass 1,986 individuals from 16 countries that origi-

nated either from virus-like particles (VLPs) or whole microbial

communities (bulk), as well as several datasets that included

RNA sequencing data derived from VLPs. All these datasets

were previously studied for viruses, but by using highly variable
methods. For the GVD, we in silico re-processed these data to

identify viral populations and rigorously remove contamination.

This GVD resource is now available on iVirus (Bolduc et al.,

2017a) and will be regularly updated.

RESULTS AND DISCUSSION

The GVD Contains 33,242 Unique Viral Populations,
Dominated by Phages
To build the GVD, 2,697 metagenomic samples from 1,986 indi-

viduals were processed from datasets publicly available as of

December 2019 (n = 32) (see Table S1), along with one unpub-

lished dataset where access was granted prior to publication.

These studies represent 5.35 Tbp of sequence data, derived

from a spectrum of gut virome study areas including the

following: (1) healthy gut viromes of infants (Lim et al., 2015;

Reyes et al., 2010) and adults (Ly et al., 2016; Manrique et al.,

2016; Minot et al., 2011, 2012, 2013; Rampelli et al., 2017), as

well as individuals experiencing (2) fecal microbiota transplant

(FMT) for autism and Clostridium difficile infection (Broecker

et al., 2016, 2017; Chehoud et al., 2016; Draper et al., 2018;

Kang et al., 2017; Zuo et al., 2018), (3) inflammatory bowel dis-

ease (IBD) (Fernandes et al., 2019; Norman et al., 2015; Pérez-

Brocal et al., 2013; Zuo et al., 2019), (4) HIV infection (Monaco

et al., 2016), (5) type I and II diabetes (Aiemjoy et al., 2019;

Kramná et al., 2015; Ma et al., 2018; Zhao et al., 2017), (6) malnu-

trition (Reyes et al., 2015), and (7) chronic fatigue syndrome (Gi-

loteaux et al., 2016) and hypertension (Han et al., 2018) (see Ta-

ble S1). These datasets were globally distributed (Figure 1).

However, most of the studies originated from the United States

(38% of GVD studies), and the highest number of sampled indi-

viduals and base pairs (bps) sequenced came from Chinese co-

horts (44% of individuals and 75%bp sequenced in the GVD). All
Cell Host & Microbe 28, 724–740, November 11, 2020 725
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reads from both bulk and VLP metagenomes (48% and 52% of

the GVD, respectively) were processed consistently, assembled

into contigs, and viral-like sequences were identified by using

three independent methods (Figure S1; see Method Details).

Each low-scoring prediction was validated by cross-compari-

sons between methods and subsequently evaluated for false

positives by detecting whether candidate virus sequences con-

tained benchmarking universal single-copy orthologs (BUSCO)-

related host single-copy genes (Simão et al., 2015) and for the

presence of viral family proteins (VPFs) (Paez-Espino et al.,

2018)). Confidence scores associated with each virus detection

method and potential false positives are reported in Table S2. To

avoid duplicate viral genomes and/or partial virus genomes

across the datasets, contigs were de-replicated by clustering

sequences according to percentage of average nucleotide iden-

tity (ANI) and sequence length. Multiple reports (Brum et al.,

2015a; Duhaime and Sullivan, 2012; Duhaime et al., 2017; Greg-

ory et al., 2019a, 2016; Roux et al., 2019) have revealed that

>95% ANI was a suitable threshold for defining a set of closely

related discrete ‘‘viral populations’’; follow-on studies suggest

that this cut-off establishes populations that are largely concor-

dant with a biologically relevant viral species definition (Bobay

and Ochman, 2018; Gregory et al., 2019a, 2016). Using this clus-

tering strategy, we identified highly variable numbers of unique

viral populations per study (range: 0–14,018 viral populations;

mean = 1,581) (Figure S2A). The GVD comprises 57,605 viral

contigs and 33,242 viral populations (R5 kb orR1.5 kb and cir-

cular contigs; N50 = 15,395 bp; L50 = 105,286 bp) and mostly

bacteriophages (97.7% of GVD). For context, NCBI’s viral Re-

fSeq (v98, released January 2020) database holds 12,183 vi-

ruses of eukaryotes, bacteria, and archaea from all environ-

ments, combined. Specifically for bacteriophages, the GVD

contains 12-fold more than the entire set of cultured phage iso-

lates in viral RefSeq to date. Thus, the GVD greatly augments the

repertoire of known phages in the human gut. Importantly, due to

a lack of negative controls across 31 out of the 32 studies in the

GVD, there is a chance that some of the viral populations

included in the GVD might result from contamination. This

paucity of negative controls is currently a limitation to gut virome

studies.

Taxonomically, 97.7% of GVD viral populations are bacterial

viruses (i.e., phages), 2.1% are eukaryotic viruses, and 0.1%

are archaeal viruses (Figure 2A). The 712 eukaryotic viruses

were taxonomically diverse (from 23 families), dominated by sin-

gle-stranded DNA (ssDNA) families Anelloviridae (71%), Ge-

nomoviridae (8%), and Circoviridae (8%), all of which have

been previously reported in the datasets underlying the GVD

(Monaco et al., 2016), with the exception of Genomoviridae.

Three single-stranded, positive-sense RNA virus families were

detected (Table S3), represented by 34 viral populations (0.1%

of the GVD). The human Picornaviridae was the most repre-

sented (parechoviruses, coxsackievirus, cosaviruses, entero-

virus, and hepatovirus), along with 8 plant or fungal viruses of

the Alphaflexviridae and Virgaviridae and one putative member

of Cruliviridae. Detection of plant viruses has been reported

before (Zhang et al., 2006) and is likely the result of transient pas-

sage through dietary habits. Human picornaviruses associated

with gastrointestinal tract disorders were to be expected, and

most derived from a Cameroonian patient cohort selected for
726 Cell Host & Microbe 28, 724–740, November 11, 2020
gastroenteritis symptoms, in which the study design included

RNA sequencing (Yinda et al., 2019). The low number of recov-

ered RNA viruses (0.1% of the GVD) (see Tables S2 and S3) in

the GVD might stem in part from having a few studies (6 out of

32) that included viral RNA sequencing. More importantly, the

likely biggest factor contributing to low RNA virus detection is

that de novo RNA virus identification method development is

an ongoing effort (Shi et al., 2016; Starr et al., 2019), such that

RNA virus diversity in gut viromes (and generally in viral metage-

nomes) is likely vastly undersampled and that our detection is

limited to homology to well-characterized pathogens (Zhang

et al., 2019). Among the phages, 88% did not have International

Committee on Taxonomy of Viruses (ICTV) classification, and the

remaining fraction comprised of double-stranded DNA (dsDNA)

tailed phage families (Siphoviridae,Myoviridae, Podoviridae, and

Ackermannviridae), Microviridae, and Inoviridae (see Table S2).

Twenty-four unknown archaeal viral populations were detected,

but none with close genome and/or gene homology to any of the

classified archaeal viruses. Notably, our naive viral taxonomic

assignments using ‘‘a majority-rules approach’’ (seeMethod De-

tails) led to taxonomic assignments that recent literature has

shown are erroneous and due to methodological artefacts,

such as Phycodnaviridae and Mimiviridae (Sutton et al., 2019),

so we manually removed such taxa. Thus, given that most of

the viral populations are represented by fragments of their ge-

nomes, taxonomic assignments using the ‘‘a majority-rules

approach’’ will improve and be refined as more complete

genome representatives are sequenced and assembled. None-

theless, the high number of unclassified phages likely results

from the underrepresentation of human gut phages in reference

databases and further highlights how much viral diversity re-

mains to be characterized in the human gut.

To fill this phage and archaeal virus taxonomic classification

gap, we used an extensively validated (Adriaenssens et al.,

2020; Bolduc et al., 2017b; Jang Bin et al., 2019), genome-

based, gene-sharing network strategy that de novo predicts

genus-level groupings (‘‘viral clusters’’ [VCs]) from viral popula-

tion data. A network (Figure 2B) computed from 15,330 GVD

phage genomes (only those >10 kb in length; 46% of GVD) and

2,191 reference phage genomes (from NCBI Viral RefSeq

version 88) revealed 2,048 VCs. Of these, 1,666 VCs were exclu-

sively composed of GVD genomes (7,055 viral genomes or

�46% of GVD genomes), whereas 125 VCs contained genomes

from both RefSeq and the GVD (600 viral genomes or �4% of

GVD genomes) and 257 VCs were exclusively composed of Re-

fSeq taxa. Thus, the GVD augments the current number of ICTV-

recognized phage genera approximately 3.5-fold. Although not

explored here, given that our goals focused on taxonomic clas-

sification, the shared protein content within and between VCs

calculated in our network analyses could be used to guide

qPCR assays for next-generation sequencing validation

(Monaco and Kwon, 2017) and/or tracking of viruses at either

the viral population or genera level under changing conditions

(Kramná et al., 2015).

Next, we sought to link the GVD phage and archaeal viral

populations to their hosts by using in silico strategies (see

Method Details). In total, we were able to identify the hosts

down to the microbial taxonomic family (Genome Taxonomy

Database [GTDB] taxonomy) (Parks et al., 2018) of �42%



Figure 2. The Gut Virome Database (GVD)

(A) Pie charts showing the number of bacteriophages, eukaryotic viruses, and archaeal viruses in the GVD (center) and their familial taxonomic composition by the

bacteriophages (left) and the eukaryotic viruses (right).

(B) Gene-sharing taxonomic network of the GVD, including viral RefSeq viruses v88. RefSeq viruses are highlighted in red. Every node represents a virus genome,

whereas connecting edges identify significant gene-sharing between genomes, which form the basis for their clustering in genus-level taxonomy.

(C) Concentric pie chart showing the number of annotated bacterial host phyla (inner) and family (outer) of the GVD viruses. Host taxonomy follows the

GTDB database taxonomic classifications, and putative host information per each viral population is listed in Table S2. See also Figures S1 and S2 and Tables S2,

S3, and S6.
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(n = 13,954) of the viral populations (see Table S2). The most

common identifiable hosts (Figure 2C) across GVD viral popu-

lations belonged to the bacterial phyla Firmicutes (GTDB Firmi-

cutes, Firmicutes_A, and Firmicutes_C combined; 49.3%) and

Bacteroidetes (GTDB Bacteroidota; 33.7%), consistent with

our knowledge that Firmicutes and Bacteroides are the most

prominent bacterial phyla in the human gastrointestinal tract

(Eckburg et al., 2005). Notably, Firmicutes typically outnumber

Bacteroidetes in unhealthy individuals with metabolic and

digestive disorders (Broecker et al., 2016; Chehoud et al.,

2016; Ley et al., 2005; Nicholson et al., 2012; Norman et al.,

2015; Ott et al., 2004; Zhao et al., 2017) and GVD metage-

nomes are biased toward unhealthy individuals (>60% of the

metagenomes comprising >83% of the bps sequenced), which
might account for the increased Firmicutes viral populations

in GVD.

The GVD Significantly Improves Virus Detection over
Current Viral Genome Databases
To assess the value of the GVD, we quantitatively evaluated virus

identification sensitivity between multiple databases by

comparing the number of viral populations identifiable by read

recruitment against GVD, NCBI’s viral RefSeq v96, DOE’s IMG/

VR v4 (Paez-Espino et al., 2018) and the individual virome data-

bases from each study (Figure 3; see Method Details). To control

for assembly improvements since the original metagenome and/

or virome datasets were published, for the latter, we individually

assembled the original viromes into viral populations for read
Cell Host & Microbe 28, 724–740, November 11, 2020 727



Figure 3. GVD As a Reference Database Increases Viral Population Detection

Boxplots showing median and quartiles of the number of viral populations detected per study using the individual virome, Viral Refseq v96, JGI IMG/VR v4, or

GVD databases. All pairwise comparisons were performed by using Mann-Whitney U tests. Non-significant p values are denoted as ‘‘ns.’’

See also Figure S3 and Table S4.
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recruitment. NCBI viral RefSeq was the most commonly used

viral genome database across the studies surveyed here, being

used in 23 of 29 studies where the specific database used was

documented (information on the genome database usedwas un-

available for three studies; see Table S1), and hosted 9,294 virus

genomes already de-replicated (as of v96, November 2019, used

here). In comparison, the IMG/VR database was not docu-

mented as being used by any of the 32 studies gathered, despite

the latest release (v4, July 2018, used in this study) containing

nearly two orders of magnitude more virus genomes and

genome fragments (760,453 virus contigs, though not de-repli-

cated). For comparison purposes to the GVD (see Method De-

tails), we de-replicated the IMG/VR contigs the same way as

we did the GVD to obtain viral-population-level genomes. This

yielded 359,826 viral populations for the IMG/VR database.

In 31 out of the 32 total studies tested (Figure 3), the GVD

enabled the detection of significantly more viruses than viral Re-

fSeq v96 (Mann-Whitney U tests; p < 0.05; 182 [average] ± 390

[standard deviation]-fold increase) and individual viromes

(Mann-Whitney U tests; p < 0.05; 6-fold ± 40-fold increase).

Notably, the proportion of the metagenome mapping to the

GVD was highly variable between studies (Figure S2B) and, as

expected, a higher proportion of VLP-enriched metagenomes

mapped to the GVD than did bulk metagenomes (Figure S2C).

There was a single study (Reyes et al., 2010) in which no viruses

were detected (see Method Details) in all databases queried in

this analysis. In comparison to IMG/VR, we detected more vi-

ruses with the GVD in all studies, 15 (47% from total) of which

were in a significant manner (Mann-Whitney U tests; p < 0.05;

2.6-fold ± 2.1-fold increase) (Figure 3). Five of the remaining four-

teen studies had too low of a sample size and/or number of de-
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tected viruses to statistically compare the GVD and IMG/VR.

Additionally, we tested the ability of the GVD to increase the

number of viral populations detected in a study not included in

the GVD (Clooney et al., 2019) (Figure S3A). We saw similar re-

sults, and GVD significantly outperformed viral RefSeq v96 and

the individual virome while having a non-significant higher me-

dian number of viral populations detected than IMG/VR.

When we considered the number of reads that recruited

across the different databases across all studies, significantly

more reads (Mann-Whitney U tests; p < 0.05) were recruited to

the GVD than to any other database across 19 out of the 32

studies (Figure S3B). After GVD, IMG/VR was the next best per-

forming database for viral detection in the human gut, given that

our tests showed an average of 64-fold ± 120-fold increase over

viral RefSeq (Mann-Whitney U tests; p < 0.05). IMG/VR was ex-

pected to surpass viral RefSeq because it aggregates both culti-

vated reference virus genomes from RefSeq, >12,000 pro-

phages, and >700,000 uncultivated virus genomes and/or

fragments from many environments, including multiple human

body sites (Paez-Espino et al., 2018). Overall, the significant in-

crease in virus detection by the GVD over other databases high-

lights the low representation of gut viruses in RefSeq and thus

demonstrates the value of the GVD for sequence-based virus

identification in human gut microbiome datasets. Thus, given

that the GVD significantly improves viral detection over current

viral genome databases, we used the GVD as the database for

all remaining analyses in this study.

The Human Gut Virome Is Highly Person Specific
In light of the current hypothesis of a ‘‘core’’ gut virome (Manri-

que et al., 2016), we were first curious whether any GVD viral



Figure 4. Individual Viromes Study Databases and Cross-Study Comparisons

Shown at the top left is a hierarchically clustered heatmap showing the number of viral populations shared within and between studies clustered into four groups

(I–IV). Viral population co-occurrence network per individual within each study per group. Shown on the bottom right is a hierarchically clustered heatmap

showing the number of viral genera shared within and between studies clustered into three groups. Viral genus cluster co-occurrence networks per metagenome

within each study per group. Colored dots and pictograms next to study names in heatmaps represent metagenome type and a common disease studies across

all 32 studies in GVD, respectively.

See also Figure S4.
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population was found across a high percentage or all metage-

nomes in the GVD. On average, 542 ± 726 (average ± SD; range:

0–6,420) viral populations were detected per metagenome, but

not a single viral population was found across all metagenomes.

In fact, the most ubiquitous viral population in the GVD was

found in only 39% of the metagenomes, 128 viral populations

occurred in more than 20% of the metagenomes, and most
(69% or 22,913) of the viral populations were only sporadically

detected at all (<0.5% of the metagenomes) (Figures S4A and

S4B; Table S4). Further, we specifically looked at the prevalence

of crAssphages, a well-recognized, multi-genera family of

phages known to be widespread in gut viromes (Guerin et al.,

2018) (Figure S4B). In total, we identified 70 crAssphage popula-

tions (see Method Details), 30 of which had genomes >10 kb
Cell Host & Microbe 28, 724–740, November 11, 2020 729



Figure 5. VLP-Enriched (VLP) and Bulk Metagenomes Comparisons for Studying Viruses in the Human Gut

(A–C) Boxplots showing median and quartiles of the number of assembled contigs per base pair sequenced per study (A) of VLP and bulk metagenomes, (B) of

VLP metagenomes with and without MDA, and (C) of the different VLP-enrichment methodologies across the studies. Outlier dots were removed from plot (C) to

better show the range of values. The n value above each box plot represents the number of studies using each VLP-enrichment method.

(D) Scatter plot with a linear regression line showing the number of assembled viral contigs per bp sequenced per study with VLP and bulk metagenome studies

identified by different colors. In the inset is a Venn diagram showing the number of GVD viral populations that originated from VLP or bulk or both types of

metagenomes.

(E) Boxplots showing median and quartiles of the number of viral populations detected per bp sequenced per individual of VLP and bulk metagenomes.

(F) Boxplots showing median and quartiles of the number of assembled contigs per bp sequenced (top left) and the median contig length (top right) for VLP and

bulkmetagenomes processed for the same samples in the Shkoporov et al, (2019) (bottom). Connected dot plot showing the number of viral populations detected

per bp sequencedby using VLP and bulkmetagenomes for each individual in the Shkoporov et al, (2019) study. All pairwise comparisons were performed by using

Mann-Whitney U tests. Non-significant p values are denoted as ‘‘ns.’’

See also Figure S4.
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that clustered into 12 VCs (i.e., genus-level grouping) by

genome-based, gene-sharing networks (Jang Bin et al., 2019).

Although together these 70 crAssphage populations are

ubiquitous across the GVD samples, there was not one crAss-

phage viral population found universally, and the most wide-

spread crAssphage population occurred in only 12%of samples.

These findings support the mounting evidence for highly per-

sonal gut viromes, as recently highlighted in twins (Moreno-Gal-

lego et al., 2019) and in ten healthy adults during a year-long

monitoring period (Shkoporov et al., 2019). Although the latter

study pointed to the potential of a core virome at higher taxo-

nomic levels, we failed to recover any universally shared viral

VCs (approximately genus level taxonomy) (Figures S4C and

S4D), given that the most ubiquitous VC was only present in

40% of the metagenomes. That same study suggesting the

potential of a higher-taxon core only looked at ten healthy,

Western adults, and the metagenomes in the GVD represented
730 Cell Host & Microbe 28, 724–740, November 11, 2020
a diversity of people from different geographical regions and

ages. Thus, further studies are necessary to resolve whether a

core virome does exists at higher taxonomic levels.

Varied Processing Methodology Prevents Population-
Level b-Diversity Inter-Study Comparisons
Next, given a systematically processed GVD and its demon-

strably improved virus detection capability, we sought to deter-

mine whether global clustering patterns would emerge via a GVD

b-diversity (between-sample changes in population composi-

tion) meta-analysis. To this end, we performed population co-

occurrence analyses at two levels of resolution (per study and

across metagenomes within studies) and then evaluated what

level of metadata best captured the resultant variation (method-

ology, disease state, etc.). To assess population-overlap be-

tween studies, we counted the number of GVD viral populations

that recruited reads within and between different GVD studies



Figure 6. More Gut Viruses Are Temperate

Phages than in the Soil and Oceans

Pie charts showing the percentages of temperate

phages found in the human gut (GVD dataset),

soils (IsoGenie dataset), and oceans (Global

Oceans Viromes 2 dataset).
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(i.e., the same viral population was detected in >1 metagenome

in both studies compared). We expected studies exploring

similar disease states would share the greatest number of viral

populations. However, hierarchical clustering of the studies on

the basis of the number of shared viral populations revealed

that this was rare and mostly not the case, and studies exploring

the viromes of diseased individuals (e.g., IBD, Clostridium diffi-

cile infection, and diabetes) did not cluster together (Figure 4,

top left—heatmap). Instead, we saw that the different studies hi-

erarchically clustered into four groups (I–IV), and that this clus-

tering was weakly driven around metagenome type; many bulk

metagenomes clustered together into group III.

Because the GVD studies did cluster into four distinct groups

(Figure 4, top left—heatmap), we next tested whether any meta-

data best captured the resultant variation across the metage-

nomes within each study within each group. Using an inverse

covariance analysis (i.e. combined partial correlations across

shared viral population between metagenomes) to sub-cluster

the different metagenomes across the studies in each group,

we found that the metagenomes within a study sub-clustered

together irrespective of geographical origin, health status, and/

or diet (Figure 4, top left—networks). Notably, the group III meta-

genomes derived mostly from bulk metagenomes were more

closely sub-clustered, but they still sub-clustered strongly by

study. This per-study sub-clustering implies that even within

these grouped studies, metagenomes from different studies

are not comparable because the inter-study variation is driven

by methodological impacts. These results reveal that although

methodology does not affect the number of viral contigs recov-

ered, it does affect the recovered types of viruses (see upcoming

findings comparing methodological effects). Interestingly, when

we looked at genus-level (i.e., VC-level) co-occurrence, we

saw that there are still strong groupings (A–C) at the study level,

but within each group, metagenomes across these studies

share many VCs (Figure 4, bottom right). Thus, b-diversity

meta-analysis across all studies exploring the effect of ‘‘disease’’

across GVD studies is not possible at the population level, but

within similarly processed studies, it might be possible at the

genus level.

ToEnrich or Not to Enrich? Viruses Recovered fromBulk
Versus Virus-Particle-Enriched Metagenomes
From a pragmatic point of view, we next wondered whether

GVD datasets could inform experimental design. Specifically,
Cell Host & Mic
to study viruses, is sequencing effort bet-

ter put into metagenomes of bulk or puri-

fied VLPs? The GVD’s 2,697 gut metage-

nomes are roughly evenly divided across

these two metagenome types with bulk

and VLP metagenomes contributing 2.7

Tbp (�51.4% of GVD) and 2.6 Tbp
(�48.6% of GVD) of data, respectively. Although most samples

only have one or the other data, one study (10 samples) (Shko-

porov et al., 2019) provided both bulk and VLP metagenomes

for 10 samples.

We first assessed whether there was a difference in de novo

viral recovery between VLP and bulk metagenomes (Figure 5A).

We measured viral recovery by using the number of viral contigs

(>5 kb or >1.5 kb and circular in length; i.e., not de-replicated

viral populations) assembled per bp sequenced per study given

that the viral contigs assembled from samples within the same

study are often pooled. These analyses revealed no significant

difference (Mann-Whitney U test; p = 0.25) in the number of viral

contigs assembled per bp sequenced between VLP and bulk

metagenomes, which contrasts viral recovery results from

permafrost soils, where VLP metagenomes outperform bulk

metagenomes by 2-fold (Trubl et al., 2018). However, viral recov-

ery from the GVD’s VLP metagenomes was heterogeneous, so

we evaluated how VLP methodology affected viral recovery.

First, although multiple displacement amplification (MDA) is

known to provide non-quantitative metagenomic datasets with

both systematic and stochastic biases (Solonenko et al., 2013;

Yilmaz et al., 2010), we found no significant difference (Mann-

Whitney U test; p = 0.75) in viral recovery between non-MDA

and MDA-treated metagenomes (Figure 5B). Nonetheless, it

was notable that MDA-treated VLP studies were significantly en-

riched in eukaryotic, ssDNA viruses (Mann-Whitney U tests; p <

0.05), a known bias of MDA (Figure S5A). Second, we tested the

effect of VLP enrichment strategies, which ranged from

removing human and bacterial cells to enrich for VLPs (centrifu-

gation, filtration, CsCl gradients, and nucleases) to concen-

trating the VLPs (centricon concentration and PEGprecipitation).

Again, we found no significant difference in the number of viral

contigs recovered (Kruskal-Wallis test; p = 0.47) across the

different VLP enrichment strategies (Figure 5C). Further, we

found that contig sizes were not significantly different either be-

tween VLP and bulk metagenomes (Mann-Whitney U test; p = 1)

(Figure S5B) or across VLP-enrichment strategies (Kruskal-

Wallis test; p = 0.18) (Figure S5C). Although surprising given

that prior work with seawater showed VLP-enrichment methods,

especially at the concentration step (tangential flow filtration

versus FeCl3) can have large effects on the number of viral types

recovered (Hurwitz et al., 2013), we note that the concentration

steps tested here are much more similar, with both being phys-

ical steps, in contrast to the physical and chemical steps tested
robe 28, 724–740, November 11, 2020 731



ll
Resource
on marine samples. Overall, we found sequencing depth (i.e.

number of bps sequenced) was the only major driver that

increased viral recovery because it was strongly correlated to

the number of assembled contigs in fecal samples (linear regres-

sion; R2 = 0.89 (all), R2 = 0.95 (bulk), R2 = 0.45 (VLP) Figures 5D,

S5D, and S5E). The non-fecal study of colon biopsies was an

outlier (Zuo et al., 2019).

Importantly, although the number of viral contigs recovered

does not vary across the treatments evaluated here, there are

clear differences between the viruses that are captured by

VLP and bulk metagenomes. In fact, only 10% of the GVD viral

populations (Figure 5D, Venn diagram inset) were recovered in

both VLP and bulk metagenomes, indicating that the different

methods enrich for different virus populations. Analyses of the

10 samples processed by using both VLP and bulk methods

(Shkoporov et al., 2019) revealed a similar overlap (8.5%) of

the viral populations being recovered from both metagenome

types. Mechanistically, this presumably results from bulk meta-

genomes primarily capturing actively infecting viruses or inte-

grated prophages, whereas VLP metagenomes target free viral

particles that would have long residence times in seawater, but

are perhaps much more transient in the gut (Neil and Cadwell,

2018; Shkoporov et al., 2019). Thus, despite no significant dif-

ference in the number of viruses recovered, the two methods

are clearly capturing different subsets of the gut viral commu-

nity such that combined VLP and bulk metagenomes can in-

crease the number of viral populations recovered. Further,

increasing sequencing efforts will increase the number of viral

contigs assembled in fecal samples regardless of enrichment

method.

Next, we assessed viral detection differences between VLP

and bulk metagenomes. Although not all viruses readily

assemble because of low abundances or hypervariable

genomic regions (Pop, 2009), once reference genomes are

available, viral populations outside those de novo assemblies

can be detected via readmapping. We used the GVD as a refer-

ence database and recruited reads from all GVD metage-

nomes. Because read mapping is mostly done per metage-

nome, we evaluated viral detection by using the number of

viral populations detected per bp sequenced per metagenome

(Figure 5E). We found that detection performance by using bulk

metagenomes was significantly higher (Mann-Whitney U test;

p = 2.22e-16) than in VLPmetagenomes. These results suggest

that bulk metagenomes provide a clear advantage for viral

detection if searched with a well-furnished database like

GVD. To our knowledge, a quantitative estimate of viral detec-

tion rates between VLP and bulk metagenomes has not been

reported previously in any ecosystem.

To further validate these results, we applied the same analysis

by using only samples in which both bulk and VLPmetagenomes

were generated from the same 10 samples, and outside the viral

particle purification step they were identically processed (Shko-

porov et al., 2019). As in our aforementioned results, we found no

significant difference between VLP and bulk number of viral con-

tigs assembled per bp sequenced (Mann-Whitney U test; p =

0.48) (Figure 5F, top left) and higher virus detection was

observed in bulk datasets than in VLP datasets (Figure 5F, bot-

tom). When we looked at the median assembled contig lengths,

VLP contigs were significantly longer than bulk contigs (Mann-
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Whitney U test; p = 0.0011) (Figure 5F, top right). This higher me-

dian contig length contrasts our findings above at the study level.

Nonetheless, we hypothesize that VLP enrichment, in the

absence of more contigs recovered, should assemble longer

contigs when comparing identical samples.

Altogether these findings suggest that, for human gut viruses,

sequencing-effort-normalized viral recovery efficiency is similar

across the suite of commonly used preparation methods, so

bulk metagenomes might be the best choice for future work

because of their ease of preparation compared with that of

VLP metagenomes and because of their higher viral detection

rates. Nonetheless, combining both VLP and bulk metage-

nomes can improve de novo viral recovery. We hypothesize

that the increase in detection performance in bulk metage-

nomes might be driven by the fact that the gut virome is en-

riched in temperate phages (reviewed in Mirzaei and Maurice,

2017), such that when integrated into their hosts genomes as

prophages, these viruses would likely be removed from the

VLP metagenomes in the VLP enrichment process. Analysis

of the number of detectable temperate phages in the GVD,

soil, and marine viral datasets has revealed that gut viruses

have �2.6- and 4.3-fold more detectable temperate phages

than soil (Emerson et al., 2018; Trubl et al., 2018) and marine

(Gregory et al., 2019a), respectively (Figure 6), indicating that

we most likely are losing more viruses from VLP enrichment

than in other systems.

Human Gut Virome Richness Is Also Impacted by
Methodology, but Is Still Comparable among Some
Studies
Because of the differences in viral detection across VLP and bulk

metagenomes and the difficulty in exploring cross-study b-diver-

sity, we next wanted to determine whether it was even possible

to compare a-diversity (local diversity) across studies. Notably,

a- and b-diversity were theoretically proposed as components

of g-diversity (regional diversity), meaning that they should scale

together (Whittaker, 1960). Nonetheless, using these theoretical

definitions in practice, it is impossible because full species inven-

tories at local and regional scales are difficult to survey (Chao

et al., 2006; Colwell and Coddington, 1994; Plotkin and Muller-

Landau, 2002). Thus, most b-diversity metrics try to be indepen-

dent of a-diversity to account for compositional sampling (Bar-

well et al., 2015; Jost, 2010), resulting in uncoupled a-diversity

and b-diversity metrics often driven by completely different

ecological drivers. This phenomenon has been seen inmarine vi-

ruses (Gregory et al., 2019b), soil microbes (Prober et al., 2015),

soil fungi (Chen et al., 2018), and at global scales looking at con-

servation across different ecosystems (Hillebrand et al., 2018).

Given this uncoupling between a- and b-diversity, we evaluated

whether a-diversity could be comparable between studies after

removing confounders.

Given that 96% of the studies in the GVD used MDA, we used

viral richness as our a-diversity metric because it is more insen-

sitive to compositional changes and thus less affected by the

population-abundance-skewing effects of MDA. Further,

because of unequal sequencing depth, we chose to use the

number of viral populations per bp sequenced per individual as

a proxy for viral richness (with viral richness being averaged

across time points for individuals with more than one



ll
Resource
metagenome). Importantly, MDA might also result in low abun-

dance populations not even being amplified, which could lead

to decreased viral richness. An initial exploration of this viral rich-

ness across studies revealed discordance among studies, with

many studies having median viral richness across individuals

above and below the 75% and 25% quantiles, respectively, of

viral richness across all individuals (Figure S6A), and viral rich-

ness strongly correlated by study (Kruskal-Wallis test; p <

2.2e-16).

Across the GVD, the vast majority of studies were Illumina

sequenced (84%), VLP enriched (84%), and MDA treated

(96%) (Table S1). Thus, we hypothesized that studies that did

not have the aforementioned characteristics were most likely

outliers. We sequentially and additively tested the effect of

sequencing platform, enrichment type (bulk or VLP), and MDA

and found that 454 sequenced metagenomes were significantly

different (Figure S6B) (Mann-WhitneyU test; p% 9.5e-06) and, of

the remaining non-454 studies, bulk metagenomes were also

significantly different (Figure S6C) (Mann-Whitney U test; p <

2.22e-16). Thus, 454 and bulk metagenomic studies were

removed. Although non-454, VLP-enriched, non-MDA, and

MDA-treated metagenomes were not significantly different (Fig-

ure S6D; Mann-Whitney U test; p = 0.12), non-MDA studies,

which only account for 4% of the studies, were also removed

to maintain consistency among studies and to ensure that the

potential biases introduced by MDA are universal across the

metagenomes assessed. Analyses of viral richness across

studies, nonetheless, still revealed discordance between studies

with viral richness still strongly correlating by study (Kruskal-

Wallis test; p < 2.2e-16).

Geographic origin and health status can also have a huge

effect on the gut virome (Broecker et al., 2016; Ma et al.,

2018; Monaco et al., 2016; Norman et al., 2015). Thus, we

tested the effect of geographic origin (Western or non-West-

ern) and health status (healthy or diseased) on viral richness

(geographic origin and disease state for each metagenome

can be found in Table S5). We found that non-Western individ-

uals have significantly higher viral richness than Western indi-

viduals (Figure S6E) (Mann-Whitney U test; p = 8.6e-07). This

supports previous findings of higher viral richness in non-

Western individuals (Rampelli et al., 2017) and parallels find-

ings of bacterial richness in Western versus non-Western indi-

viduals (Obregon-Tito et al., 2015; Schnorr et al., 2014; Yatsu-

nenko et al., 2012). Next, among the Western individuals, we

found higher viral richness among healthy individuals than

among individuals with disease (Figure S6F) (Mann-Whitney

U test; p = 8.5e-13). This supports previous findings that

show healthy individuals have higher viral richness than do in-

dividuals with Clostridium difficile infection (Zuo et al., 2018)

and IDB in one study (Pérez-Brocal et al., 2013), but contrasts

findings that show viral richness is higher in patients with dia-

betes (Ma et al., 2018) and IBD in other studies (Fernandes

et al., 2019; Norman et al., 2015). Thus, we filtered out non-

Western, diseased individuals. The remaining individuals

from 11 studies represented non-454-sequenced, VLP-en-

riched, MDA-treated metagenomes from healthy, Western in-

dividuals. Across these studies, the median number of viral

richness all fell within the 75% and 25% quantiles of viral rich-

ness across all remaining individuals (Figure S6G), resulting
in a non-significant association between viral richness and

study (Kruskal-Wallis test; p < 0.09745) and indicating that

the viral richness values across these individuals in these

studies were comparable.

Gut Virome Diversity Is Age-Dependent in Healthy,
Western Cohorts
Beyond using GVD meta-analyses to re-assess existing human

gut virome study conclusions, we next wanted to leverage the

subset of data for which viral richness was identified to be com-

parable (see above), and used it to assess a near-completely

open question: how does age affect gut viral richness? This

filtered dataset (151 healthy, Western individuals, non-454,

VLP-enriched, and MDA-treated) represented individuals whose

ages spanned the different life stages (0–65+ years old) within

the GVD. In total, there were 27 infants (0–3 years old [Lim

et al., 2015; McCann et al., 2018]), 11 children (3–18 years old

[Fernandes et al., 2019]), 93 adults (18–65 years old [Chehoud

et al., 2016; Draper et al., 2018; Ly et al., 2016; Minot et al.,

2012, 2013; Moreno-Gallego et al., 2019; Shkoporov et al.,

2019]), and 20 elderly (>65 years old [Stockdale et al., 2018])

defined as healthy in their respective datasets. Mounting evi-

dence suggests that the human gut bacteriome displays distinct,

age-dependent patterns of diversity (i.e., species richness, as-

sessed with 16S rRNA sequencing), in response to an array of

factors including immune status fluctuations during life (Claes-

son et al., 2012; Odamaki et al., 2016; Scepanovic et al.,

2019). However, there are no comparable estimates for the hu-

man gut virome across the lifespan, except in babies (Liang

et al., 2020; Lim et al., 2015).

Using these healthy, Western individuals, we looked at viral

richness across the human life stages (Figure 7A). Across the hu-

man lifespan in the GVD, highest overall viral richness was

observed in infants and adults, and there were significant in-

creases between children and adults (Mann-Whitney U test;

p = 0.034) and significant decreases between adults and elderly

individuals (Mann-Whitney U test; p = 0.014) (Figure 7B, left). The

latter trend was also true for a Chinese cohort (Mann-Whitney U

test; p = 0.00048) (Figure 7B, right) (Ma et al., 2018).

These overall trends, however, did not apply evenly across vi-

rus types. For example, eukaryotic (mostly human Annellovi-

ruses) virus richness (Figure 7A, red curve) is high at infancy, pre-

sumably driven by an underdeveloped immune system, and then

decreases into childhood and remains constant and low through

the rest of life (Figure S7A). In contrast, bacteriophages mirrored

the overall viral richness trend, with the bacteriophage family Si-

phoviridaemirroring the overall viral richness trend the best (Fig-

ures 7A and S7A). This follows our basic understanding of the gut

virome, which suggests that most viruses are temperate bacte-

riophages, of which many are Siphoviridae viruses (Mirzaei and

Maurice, 2017). Curiously, Microviridae richness per bp

sequenced peaked modestly in infancy, dropped in childhood

and then slowly increased across the rest of the lifespan (Figures

7A and S7A).

Given the importance of crAssphages in the human gut

virome literature, we next assessed how its populations per bp

sequenced varied with age. This revealed a relatively constant

upward trend from infancy to elderhood, and the largest shift

occurred between childhood and adulthood (Figures 7A, white
Cell Host & Microbe 28, 724–740, November 11, 2020 733



Figure 7. Viral Diversity across Lifespan in Healthy, Western Individuals

(A) Composite plot showing (from top to bottom) the number of bacterial operational taxonomic unit (OTU) trends across the life stages derived from a literature

review; a map highlighting the origin of the healthy, Western individuals; the number of healthy, Western individuals per life stage; Loess smoothing plots of the

number of viral populations; the number of viral populations by type; the number of viral populations by viral family; and the number of crAssphage populations per

bp sequenced across the life stages in healthy, Western individuals. Box plots showing median and quartiles and Mann-Whitney U test results between the

different life stages can be found in Figure S7.

(B) Box plots showing median and quartiles of the number of viral populations per bp sequenced across the life stages across healthy, Western individuals (left)

and across adults and elderly individuals from non-Western Chinese individuals (right). All pairwise comparisons were performed by usingMann-Whitney U tests.

(C) Presence absence plot showing the distribution of the 70 crAssphage populations in the GVD across the healthy, Western individuals.

See also Figures S6 and S7 and Table S5.
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curve, and S7). We were then curious whether this increase was

because of the acquisition of additional crAssphage species

through life or because of the initial crAssphage populations ex-

panding their proportional niche in the gut virome (Figure 7C).

These analyses revealed that crAssphage were not detectable

in infants (except in one individual) or children, which contrasts
734 Cell Host & Microbe 28, 724–740, November 11, 2020
findings from recent studies (Guerin et al., 2018; Liang et al.,

2020). This implies that the large increase in crAssphage popula-

tions per bp sequenced from children to adults was because of

the acquisition of crAssphage. For the increase observed be-

tween adults and the elderly, we saw no significant difference

in the number of crAssphage populations and no changes in
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the crAssphage populations detected between adults and

elderly individuals (Mann-Whitney U tests; p > 0.05). Notably,

because we were using the number of viral populations per bp

sequenced as a proxy for viral richness, changes in this value

can represent an increase in the number of viral populations or

an increase in the proportion of the total virome the viral popula-

tions make up. Thus, we hypothesize that the increase in crAss-

phage from adult to elderly is most likely because of crAssphage

populations taking up a larger proportion of the total gut virome.

All age-dependent viral richness patterns were upheld even after

a stringent removal of 19,551 potential contaminants, defined

here as any population that was rare in any study and only found

in one study (Figure S7B; see Method Details).

Lastly, we wanted to see how these age-dependent viral rich-

ness trends compared with overall bacterial richness trends in

the gut. There are two major paradigms for the life stages of

gut bacterial richness. The first paradigm is that the commensal

gut bacterial richness increases into adulthood and then de-

creases into old age (reviewed in Nagpal et al., 2018). The sec-

ond paradigm is that bacterial richness slowly increases

throughout the lifespan from infancy into old age (reviewed in

Santoro et al., 2018). Some studies attribute this paradigm split

at old age to whether an elderly person is living in a nursing

home or in the broader community, with those living in nursing

homes seeing a decrease in bacterial richness (e.g. Claesson

et al., 2012) (Figure 7A). Prior analyses of the viral richness none-

theless revealed no difference between elderly individuals living

in nursing homes or the community (Stockdale et al., 2018); thus,

all of the GVD elderly individuals, who coincidentally were from

that study, were included regardless of where they lived. Here,

we found the viral richness fluctuations broadly related to bacte-

rial richness trends in bacterial richness paradigm one, but with a

strong deviation at infancy, wheremost likely theweak, underde-

veloped immune system and lack of epithelium-protecting

commensal bacterial allows for viral infection of human cells (Fig-

ure 7A). The presence of many eukaryotic viruses was also pre-

viously found in babies (Liang et al., 2020; Lim et al., 2015). An-

alyses of human cohorts after the first paradigm suggest that

increased bacterial inter-species competition over the lifespan

induces the establishment of more successful strains of the

same species, thus reducing richness into old age (Aleman

and Valenzano, 2019). It remains unclear whether this inter-spe-

cies competition affects viral richness, but given the parallels be-

tween bacterial and viral richness, we hypothesize it most likely

plays a role for both. This inter-species competition might also

help explain the crAssphage trend, in which Bacteroides

(crAssphage’s host) gain a stronger foothold into older years,

thus increasing crAssphage abundance. Overall, these results

suggest that, like gut bacterial richness, gut viral richness is

also age dependent.

Conclusions
The lack of a curated database for the detection of viral se-

quences in the human gut has been identified as themost critical

shortcoming of applying metagenomic approaches to studying

the human gut virome (Shkoporov and Hill, 2019). Although sam-

ple preparation standards are emerging for human gut viromics

(Shkoporov et al., 2018), the field currently lacks an equivalent

for in silico virus analytics. The GVD and its associated contig
processing methods are geared towards filling this standardiza-

tion gap and performs well beyond ‘‘classical’’ databases used

across the field.

However, the GVD dataset currently suffers from several lim-

itations. First, the geographic and ethnic representation across

the dataset is not very broad. Meta-analyses will benefit from

more broadly representative datasets as they become avail-

able. Second, there are many more human gut and other hu-

man-associated bulk metagenomic datasets and, if mined for

viruses, these could be a rich source for virus reference ge-

nomes as found for soils (Emerson et al., 2018) and the

large-scale Earth Virome study (Paez-Espino et al., 2016). In

addition, given the current challenges in RNA virus discovery

in metagenomic datasets (Greninger, 2018), the extent of

RNA viruses in the human gut is likely underestimated. Lastly,

GVD viral contigs, even though a conservatively determined da-

taset, might contain other non-viral mobile elements that

possess phage-like characteristics, such as gene transfer

agents and defective prophages.

The GVD, combined with the means to classify uncultivated

virus genomes (Jang Bin et al., 2019), are prime starting re-

quirements for enabling ecosystem-wide examinations (Roux

et al., 2016) of the dynamics and effects of the virome within

the human gut. For example, here, we used the GVD database

to uncover the age-dependent patterns of virome diversity in

healthy, Western individuals. However, the GVD could also

have much broader implications including helping better clas-

sify individuals’ native gut microbiomes and viromes to deter-

mine how it affects a person’s predisposition to diseases like

COVID-19 (Gou et al., 2020). Outside of the human ecosystem,

the GVD could have potential use to increase viral detection in

a broader context, such as animal gut microbiomes or aquatic

samples being analyzed for fecal contamination monitoring.

Other environmental advances also invite such studies to

include assessing the role of micro- and macro-diversity on vi-

rus persistence (Gregory et al., 2019a), and metabolic reprog-

ramming via virus-encoded auxiliary metabolic genes (Emerson

et al., 2018; Roux et al., 2016) and without that could drastically

alter the ecosystem outputs of any infected cell (Howard-Var-

ona et al., 2020). These combined eco-systems biology efforts

are critical to enable studies of the human gut virome to

advance from ‘‘stamp collecting’’ diversity studies towards

the kinds of comprehensive efforts needed to incorporate vi-

ruses into mechanistic, predictive models. Such efforts, with

future viral mapping outside the gut to parallel efforts for the

‘‘non-gut’’ human microbiome (Pasolli et al., 2019), should

help transform personalized medicine and lead to a better un-

derstanding of human ecosystems.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Aiemjoy et al., 2019 sequencing reads Aiemjoy et al., 2019 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Broecker et al., 2016 sequencing reads Broecker et al., 2016 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Chehoud et al., 2016 sequencing reads Chehoud et al., 2016 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Clooney et al., 2019 sequencing reads Clooney et al., 2019 NCBI Sequence Read Archive (SRA) -

PRJNA552463

Draper et al., 2018 sequencing reads Draper et al., 2018 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Fernandes et al., 2019 sequencing reads Fernandes et al., 2019 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Giloteaux et al., 2016 sequencing reads Giloteaux et al., 2016 MG-RAST - see Table S1 for details

Han et al., 2018 sequencing reads Han et al., 2018

(originally from Li et al., 2017)

NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Kang et al., 2017 sequencing reads Kang et al., 2017 iVirus - see Table S1 for details

Kramná et al., 2015 sequencing reads Kramná et al., 2015 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Lim et al., 2015 sequencing reads Lim et al., 2015 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Ly et al., 2016 sequencing reads Ly et al., 2016 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Ma et al., 2019 sequencing reads Ma et al., 2018 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Manrique et al., 2016 sequencing reads Manrique et al., 2016 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

McCann et al., 2018 sequencing reads McCann et al., 2018 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Minot et al., 2011 sequencing reads Minot et al., 2011 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Minot et al., 2012 sequencing reads Minot et al., 2012 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Minot et al., 2013 sequencing reads Minot et al., 2013 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Monaco et al., 2016 sequencing reads Monaco et al., 2016 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Moreno-Gallego et al., 2019 sequencing reads Moreno-Gallego et al., 2019 European Nucleotide Archive (ENA) -

see Table S1 for details

Neto et al. (unpublished) sequencing reads Unpublished data iVirus

– we were given some of the reads

before publication

Norman et al., 2015 sequencing reads Norman et al., 2015 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Pérez-Brocal et al., 2013 sequencing reads Pérez-Brocal et al., 2013 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Rampelli et al., 2017 sequencing reads Rampelli et al., 2017 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Reyes et al., 2010 sequencing reads Reyes et al., 2010 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Reyes et al., 2015 sequencing reads Reyes et al., 2015 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Shkoporov et al., 2018 sequencing reads Shkoporov et al., 2018 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Shkoporov et al., 2019 sequencing reads Shkoporov et al., 2019 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Stockdale et al., 2018 sequencing reads Stockdale et al., 2018 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Yinda et al., 2019 sequencing reads Yinda et al., 2019 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Zhao et al., 2017 sequencing reads Zhao et al., 2017 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Zuo et al., 2018 sequencing reads Zuo et al., 2018 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Zuo et al., 2019 sequencing reads Zuo et al., 2019 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Software and Algorithms

nucmer (MUMmer3.23) Kurtz et al., 2004 https://sourceforge.net/projects/mummer/

bbmap 37.57 https://jgi.doe.gov/data-and-

tools/bbtools/

https://jgi.doe.gov/data-and-tools/bbtools/

metaSPAdes 3.11 Nurk et al., 2017 https://github.com/ablab/spades/releases

prodigal 2.6.1 Hyatt et al., 2010 https://github.com/hyattpd/Prodigal

diamond Buchfink et al., 2014 https://github.com/bbuchfink/diamond

VirSorter v2 Roux et al., 2015 https://github.com/simroux/VirSorter

VirFinder Ren et al., 2017 https://github.com/jessieren/VirFinder

CAT Cambuy et al., 2016 https://github.com/dutilh/CAT

BUSCO Simão et al., 2015 https://busco.ezlab.org/

Viral protein families (VPFs) Paez-Espino et al., 2017 http://portal.nersc.gov/dna/microbial/

prokpubs/EarthVirome_DP/final_list.hmms

hmmmr Finn et al., 2015 http://www.hmmer.org/

blast 2.4.0+ ftp://ftp.ncbi.nlm.nih.gov/blast/

executables/blast+/

ftp://ftp.ncbi.nlm.nih.gov/blast/

executables/blast+/

IMG/VR v4 Paez-Espino et al., 2017 https://img.jgi.doe.gov/cgi-bin/vr/main.cgi

Viral Refseq v96 https://ftp.ncbi.nlm.nih.gov/

refseq/release/viral/

https://ftp.ncbi.nlm.nih.gov/refseq/release/viral/

vConTACT2 Bin Jang et al., 2019 https://bitbucket.org/MAVERICLab/vcontact2

minced Bland et al., 2007 https://github.com/ctSkennerton/minced

tRNA-scan Lowe and Eddy, 1997 http://lowelab.ucsc.edu/tRNAscan-SE/

MArVD Vik et al., 2017 https://bitbucket.org/MAVERICLab/marvd

WIsH Galiez et al., 2017 https://github.com/soedinglab/WIsH

MCL Enright et al., 2002 https://micans.org/mcl/

bowtie2 Langmead and Salzberg, 2012 https://github.com/BenLangmead/bowtie2

coverM https://github.com/wwood/CoverM https://github.com/wwood/CoverM

bedtools Quinlan and Hall, 2010 https://github.com/arq5x/bedtools2

GTDB-Tk v1.1 Parks et al., 2020 https://github.com/Ecogenomics/GTDBTk

vegan (R package) Dixon, 2003 https://cran.r-project.org/web/packages/

vegan/index.html

maps (R package) https://cran.r-project.org/web/

packages/maps/index.html

https://cran.r-project.org/web/packages/

maps/index.html

pheatmap (R package) https://cran.r-project.org/web/

packages/pheatmap/index.html

https://cran.r-project.org/web/packages/

pheatmap/index.html

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

SpiecEasi (R package) https://www.rdocumentation.org/

packages/SpiecEasi/versions/0.1.4

https://www.rdocumentation.org/packages/

SpiecEasi/versions/0.1.4

igragh (R package) https://cran.r-project.org/web/

packages/igraph/

https://cran.r-project.org/web/packages/igraph/

ggplot2 (R package) https://cran.r-project.org/web/

packages/ggplot2/index.html

https://cran.r-project.org/web/packages/

ggplot2/index.html

ggpubr (R package) https://cran.r-project.org/web/

packages/ggpubr/index.html

https://cran.r-project.org/web/packages/

ggpubr/index.html

gtools (R package) https://cran.r-project.org/web/

packages/gtools/index.html

https://cran.r-project.org/web/packages/

gtools/index.html

biomod2 (R package) https://cran.r-project.org/web/

packages/biomod2/index.html

https://cran.r-project.org/web/packages/

biomod2/index.html

BiodiveristyR (R package) https://cran.r-project.org/web/

packages/BiodiversityR/index.html

https://cran.r-project.org/web/packages/

BiodiversityR/index.html

Analyses scripts and input data (per Figure) This paper https://bitbucket.org/MAVERICLab/GVD
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the corresponding contact, Matthew Sul-

livan (sullivan.948@osu.edu).

Materials Availability
Gut virome database (GVD) studies were selected by doing a thorough and manually curated search of the Web of Science Core

Collection of Thomson Reuters for studies looking at gut viruses published until October 2019. All studies that used next-generation

sequencing and looked for viruses within the gut microbiome were selected to be part of GVD (see full list of studies in Table S1).

Additionally, we were given access to the reads of one study that is unpublished (unpublished data) and are available upon

request. Lastly, we used the reads from another gut virome study not included in GVD ((Clooney et al., 2019); SRA: PRJNA552463).

Data and Code Availability
Scripts used in this manuscript are available on the Sullivan laboratory bitbucket under ‘gvd’ (https://bitbucket.org/MAVERICLab/

gvd/). All raw reads are available through SRA, iVirus, or MG-RAST using the identifiers listed in Table S1. GVD viral populations

and all IV databases per study can be downloaded directly from iVirus through the following DOI link: https://doi.org/10.25739/

12sq-k039.

METHOD DETAILS

Viral Contig Assembly and Identification
Previously published GVD reads and their associated metadata were downloaded from their respective hosting databases (e.g.

SRA, iVirus, or MG-RAST). The reads for one study were given to us prior to publication (unpublished data). Each individual

downloaded library was counted as a metagenome and processed independently, with the exception of four studies that were pre-

viously processed in the lab and were pooled per individual for the assembly process (Chehoud et al 2016, Lim et al., 2015, Minot

et al., 2013, Zhao et al., 2017) based on the knowledge that the gut virome is fairly consistent throughout time (Minot et al., 2013).

Reads were cleaned by filtering for quality, trimming, and removing adaptors and fx174 reads using bbduk (ktrim=r

k=23 mink=11 hdist=1) and removing the reads that mapped to the human genome using bbmap (minid=0.95 maxindel=3

bwr=0.16 bw=12 quickmatch fast minhits=2) from the bbmap suite (Bushnell, 2015). All references to the number of base pairs

sequenced is based on the cleaned, quality-controlled reads. A global map showing the number of studies originating from each

country was created using the R packages ‘rworldmap.’ In total, there were 2,697 metagenomes from 1,986 individuals across 32

studies.

Reads were then assembled using metaSPAdes 3.11.1 (Nurk et al., 2017), due to its performance in sensitivity analyses

(Roux et al., 2017; Sutton et al., 2019) and assembly of large-scale virome datasets (Guerin et al., 2018; Paez-Espino et al., 2016).

Following assembly, contigs R1.5kb were piped through VirSorter (Roux et al., 2015) and VirFinder (Ren et al., 2017) and those

that mapped to the human, cat or dog genomes were removed, as well as known spike-in contaminants (lactococcal phage Q33

and coliphage Qb) from the Shkoporov et al. 2018 and Shkoporov et al. 2019 studies. Contigs R5kb or R1.5kb and circular that

were sorted as VirSorter categories 1-6 and/or VirFinder score R0.7 and p <0.05 were pulled for further investigation. Of these
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contigs, those sorted as VirSorter categories 1 and 2, VirFinder score R0.9 and p <0.05 or were identified as viral by both VirSorter

(categories 1-6) and VirFinder (scoreR0.7 and p <0.05) were classified as viral. The remaining contigs were run through CAT (Cam-

buy et al., 2016) and those with <40% (based on an average gene size of 1000) of the contig classified as bacterial, archaeal, or eu-

karyotic were considered viral contigs. ContigsR5kb orR1.5kb and circular that were classified as eukaryotic viral contigs by CAT

were also considered viral contigs. In total, 57,605 putative viral contigs were identified.

Assessing Potential False Positives and Dereplication
All putative viral contigs were then assessed to determine whether they could be a bacterial false positive by the level of bacterial

and viral gene enrichment in each contig. Assessing whether a putative viral contig could be bacterial is extremely hard given that

viruses often pick up their host genes, even ribosomal proteins (Mizuno et al., 2019). Further, bacterial genomes also pick up phage

genomes and genes (e.g., intact and degraded prophages). Thus, a BLAST search of a viral contig against a database of all bacterial

proteins would undeniably result in hits. To limit this problem, we chose to assess the level of bacterial gene enrichment using the

number of hits to bacterial universal single-copy orthologs (i.e., BUSCO; (Waterhouse et al., 2017)) because these genes are highly

conserved and the more of these genes present, the more likely it is bacterial. We used hmmsearch (Finn et al., 2011) to search

the 148 BUSCO gene HMMs and then used the BUSCO provided HMM score cut-offs to filter our results for ‘‘hits.’’ A hit was defined

by an e < 0.05 and a score R scores cut-offs identified by BUSCO. Because some of these genes could still be present in viruses

(Mizuno et al., 2019), we wanted a way to establish a level of BUSCO genes that was ‘‘acceptable’’ for a viral genome. In order to

establish this acceptable baseline, we assessed the number of BUSCO genes present within prokaryotic viral genomes in Viral Re-

fSeq v96, which are genomes that are derived from viral isolates. Because most of the putative viral genomes within GVD are not full

genomes, we wanted to know the rate of BUSCO hits per total number of genes in each Viral RefSeq genome (BUSCO ratio). This

established a range of BUSCO ratios values of 0-0.067 that were derived from known virus genomes, and so were considered

‘acceptable’. We then assessed the BUSCO ratios values for all GVD putative viral contigs and compared it to the Viral RefSeq

BUSCO ratio values (see Table S2). To assess the level of viral gene enrichment, an hmmsearch of all GVD viral contigs against

the curated viral protein family modules (VPFs) (Paez-Espino et al., 2017) was performed with hits being defined as any matches

with an e-value < 0.05. The number of VPF hits are available in Table S2. To remove potential false positives and decontaminate

the set of GVD viral contigs, only the GVD contigs that had a BUSCO ratio < 0.067 or had a BUSCO ratio > 0.067 and at least 3

VFP hits were kept in the remaining database.

The remaining GVD viral contigs that were from known ssDNA or RNA viral families using CAT were grouped into populations if

they sharedR95% nucleotide identity across 3100% of the genome. Because there are no benchmarked metagenomic population

boundaries for ssDNA and RNA viral families, we chose to not use stringent dereplication. All other contigs were considered double-

stranded DNA and were grouped into populations if they shared R95% nucleotide identity across R70% of the genome (sensu

(Brum et al., 2015b)) using nucmer (Kurtz et al., 2004). All the viral contigs that were assembled were dereplicated per study to create

the individual virome (IV) databases and across all of GVD (see Figure S2A and Table S6). For GVD, this resulted in 33,242 total viral

populations found in GVD (see Table S2 for VirSorter, VirFinder, and CAT results), of which 15,330 were R10 kb in length.

Viral Taxonomy
For each viral population, ORFs were called using Prodigal (Hyatt et al., 2010) and the resulting protein sequences were used as input

for vConTACT2 (Bin Jang et al., 2019) and for BLASTp. Double-stranded DNA viral populations represented by contigs >10kb were

clustered with Viral RefSeq release 88 viral genomes using vConTACT2. Those that clustered with a virus from RefSeq based on

amino acid homology based on DIAMOND (Buchfink et al., 2014) alignments were able to be assigned to a known viral taxonomic

genera. The gene-sharing network was processed using igraph’s python package. After the initial import, networks were cleaned to

remove duplicate edges, and all VCs with fewer than 5 members were discarded. Afterwards, the network layout was calculated us-

ing the Fruchterman-Reingold algorithm, with RefSeq phage references genomes (red nodes in the network) having a fixed position

based on their positions originally published in the initial vConTACT2 paper (Bin Jang et al., 2019). For viral dsDNA populations that

could not be assigned taxonomy or were <10kb, family level taxonomywas assigned using amajority-rules approach, where if >50%

of a genome’s proteins were assigned to the same viral family using a BLASTp bitscoreR50 with a Viral RefSeq virus, it was consid-

ered part of that viral family (see Table S2 for family-level taxonomy). For eukaryotic, ssDNA andRNA viruses, CATwas used to assign

the viral family (see Table S2 for family-level taxonomy).

Identifying Temperate Phages across Datasets
VIBRANT (Kieft et al., 2019) was run using its default settings on the GVD, Global Oceans Viromes 2 (Gregory et al., 2019a) and Iso-

Genie (Emerson et al., 2018; Trubl et al., 2018) viral populations. The viruses identified as lysogenic were pulled as the detected

temperate phages across the different datasets.

Virus-Host Predictions
Microbial hosts for theGVD viral populations were predicted using a variety of bioinformatic methods that include viral exactmatches

(or close similarity) to (i) host CRISPR-spacers, (ii) integrated prophages in host genomes, (iii) host tRNA genes, and (iv) host k-mer

signatures calculated by WisH (Galiez et al., 2017). Two host databases were used to establish these virus-host linkages: (i) 239,583

assembled prokaryotic genomes from Refseq (downloaded March 2020) which were employed for the first three bioinformatic
e4 Cell Host & Microbe 28, 724–740.e1–e8, November 11, 2020
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approaches above, and (ii) 4644 species-level prokaryotic genomes from the Unified Human Gastrointestinal Genome (UHGG) cata-

logue (Almeida et al., 2020) which were employed for all of the four bioinformatic approaches. All genomes across the two databases

were taxonomically annotated using the Genome Taxonomy Database (GTDB) taxonomy system (Parks et al., 2020) either by the

curators of the two databases (UHGG and GTDB) or by us (using GTDB-Tk v1.1 in the ‘‘classify_wf’’ mode). CRISPR spacers

were predicted from the host genomes with MinCED (Bland et al., 2007) using the ‘‘-minNR 2’’ parameter (https://github.com/

ctSkennerton/minced) and a BLASTn was used to assess matches between the CRISPR spacers and viral populations in GVD.

The number of exact spacer matches to the viral genome were recorded for each viral population-host pair along with the cases

where there is a single base difference at the spacer end when aligned against the viral genome. We then assigned scores for all

the virus-host pairs so that multiple spacer matches would score higher (perfect score) than a single spacer exact match (high score)

than a single spacer with a base difference at its end (intermediate score). For prophage blasts, a BLASTn (-task megablast) of the

viral population against the two databases was performed. A microbial genome withR2500bp regions of their genome matching at

90% ID with a viral population genome were kept for further consideration (see Roux et al., 2016). These matches were then further

filtered by both viral contig coverage (requiring at least 30% viral coverage) and host contig coverage (requiring at least 30% of the

host contig to be outside the prophage region alignment to avoid mis-binned viral fragments in host metagenome assembled ge-

nomes). Finally, the remaining matches were scored based on viral contig coverage so that 90% coverage would score higher (per-

fect score) than 75% (high score) than 50% (intermediate score) than 30% (low score). Viral and host tRNA genes were predicted

using tRNA-scan (Lowe and Eddy, 1997) (using the general and bacterial/archeal models, respectively) and then a BLASTn was per-

formed between the viral and bacterial tRNA genes. Viral tRNA genes were also searched with BLASTn against the tRNA sequences

from the Earth virome dataset (Paez-Espino et al., 2016) and all the promiscuous tRNAs were removed from further analyses. The

tRNA matches between the viruses and the hosts in our dataset were then scored so that an exact match would score higher

(high score) than a host tRNA with a single base difference (intermediate score) than a host tRNA with two bases difference (low

score). Lastly, WIsH was used to predict hosts after masking tRNA sequences on the viral genomes to improve performance (Galiez

et al., 2017). Viral Refseq was used as a decoy database after conservatively excluding viruses that are known to infect the genus of a

host under prediction at any given instance. For each viral population, the predicted host with the lowest p was kept for further inves-

tigation. We then assigned these linkages scores so that the lower the p, the higher the score, with a p of zero given a (high score) and

a p of 1e-05 given an (intermediate score). In order to conservatively show family-level host assignments here, we chose to only

include predictions with perfect and high scores. Note that perfect scores were only given to CRISPR and prophagematches to allow

thempriority host assignment overWIsH and tRNA results. Viruses with putative archaeal hostswere also predicted usingMarVD (Vik

et al., 2017). Viruses with predicted eukaryotic hosts were assigned based on their assigned taxonomic viral family.

Detecting Viral Populations and Calculating Their Raw Abundances per Each Assembled Metagenome or Assembled
Pooled Read Set
To calculate the raw abundances of the different viral populations in each sample, reads from each GVDmetagenome or pooled read

sets for the four previously processed studies (Chehoud et al 2016, Lim et al., 2015, Minot et al., 2013, Zhao et al., 2017) were non-

deterministically mapped to the GVD viral populations using bowtie2 (Langmead and Salzberg, 2012). CoverM (https://github.com/

wwood/CoverM) was used to remove reads that mapped at <95% nucleotide identity to the contigs, bedtools genomecov (Quinlan

and Hall, 2010) was used to determine how many positions across each genome were covered by reads, and custom Perl scripts

were used to further filter out contigs without enough coverage across the length of the contig. All contigs <5kb in length with

R70% of the contig covered were considered detected in the sample. Contigs R5 kb in length with R5 kb in length covered

were also considered detected in the sample (Gregory et al., 2019a). CoverM was used to calculate the average read depth

(‘tpmean’- i.e. mean minus the top and bottom 5% depths) across each detected contig. The average read depth was considered

the raw abundance of each viral population in each study.

Comparisons to IMG/VR, Viral RefSeq v96, and Individual Virome Databases
The latest IMG/VR release (v4, July 2018) was downloaded, and included all viral contigs, not dereplicated into populations or vOTUs.

All of the viral contigs in GVD, Viral Refseq v96, and individual virome databases are dereplicated at the population level. In order to

make IMG/VR comparable to GVD, Viral Refseq and individual virome databases, we needed to dereplicate the IMG/VR database.

IMG/VR v4 is composed of 760,453 contigs. Because the database is so large, we first used BLASTn to compare homology between

all IMG/VR contigs using a word size = 100. The BLASTn results were then used to cluster the genomes using MCL (Enright et al.,

2002) and the clustering similarity graphs encoded in BLAST methodology (https://micans.org/mcl/). The clustered genomes based

onMCL clustering were then dereplicated if they sharedR95% nucleotide identity acrossR70% of the genome (sensu (Brum et al.,

2015b)) using nucmer. In total, all of the IMG/VR viral contigs were dereplicated into 359,826 viral populations. GVD metagenomes

were then mapped to this IMG/VR human gut viral population database, Viral RefSeq v96, and their respective IV databases for each

individual study in GVD. The raw abundances of the different IMG/VR, Viral RefSeq, and IV viral populations in each sample were

calculated the same way as described in the previous section. The total number of viral populations detected per sample per study

was calculated using the ‘vegan’ package (Dixon, 2003) in R. These values were then plotted and comparative statistics were gener-

ated using the ‘ggboxplot’ function from the ‘ggpubr’ package in R. Importantly, ggboxplot plots the median and quartiles and cal-

culates Mann-Whitney U tests between groupings. Fold-change differences were calculated using the ‘gtools’ package in R.
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The number of unique reads mapped from each GVD sample to GVD, IMG/VR v4,Viral Refseq v96, and IV databases was calcu-

lated by counting the number of reads mapped following removal of reads mapped at <95% nucleotide identity. The total number of

reads mapped per sample using the different databases were then plotted and comparative statistics were generated using the

‘ggboxplot’ function from the ‘ggpubr’ package in R.

To test if GVD was also useful for gut virome studies not included in GVD, reads were also downloaded from a recent gut virome

study not included in GVD (Clooney et al., 2019; SRA PRJNA552463), processed, and viral contigs identified and assessed for false-

positives using the same method described above. In total, we identified 1,299 viral populations. The number of viral populations

detected using GVD, IMG/VR, Viral RefSeq, and the Clooney et al. 2019 individual virome database using the same methods

described above.

Detecting Viral Populations and Calculating Their Raw Abundances by Metagenome
To calculate the raw abundances of the different viral populations in each sample, reads from each GVD metagenome included the

unpooled read sets (Chehoud et al 2016, Lim et al., 2015, Minot et al., 2013, Zhao et al., 2017) were non-deterministically mapped to

the GVD viral populations using bowtie2 and processed as detailed above in Detecting viral populations and calculating their raw

abundances per each assembled metagenome or assembled pooled read set. The raw abundances for each GVD viral population

in each metagenome are available in Table S4.

Assessing VLP-Enriched and Bulk Metagenomes
Metagenomeswere divided into VLP-enriched (VLP) and bulkmetagenomes (information permetagenome can be found in Table S5).

To assess whether therewas a difference between viral recovery in VLP versus bulkmetagenomes, the number of assembled contigs

per study was divided by the total number of clean base pairs sequenced in the study. For the Shkoporov et al., 2019 study, the viral

contigs assembled from the VLP and bulk were kept separate and divided by the respective number of base pairs sequenced. The

VLP and bulk studies were then plotted in boxplots and comparative statistics were performed using the ‘ggboxplot’ function from

the ‘ggpubr’ package in R. Of the VLP studies, the number of viral contigs assembled per base pair sequenced per study with and

without MDA-treatment and the different VLP-enrichment strategies were also plotted in boxplots and comparative statistics were

performed using the ‘ggboxplot’ function from the ‘ggpubr’ package in R. The median contig length per study between VLP and bulk

and across the different VLP-enrichment strategies were also plotted in boxplots and comparative statistics were performed using

the ‘ggboxplot’ function from the ‘ggpubr’ package in R. To assess the impact of sequencing depth on viral contig assembly, a scat-

terplot of the number of assembled contigs per study were plotted against the total number of clean sequenced base pairs per study

and linear regression run using the package ‘ggplot2’ in R. This was repeated in solely the VLP metagenome studies and solely the

bulk metagenome studies.

To assess whether there was a difference between viral population detection in VLP versus bulk metagenomes, the total number of

viral populations detected per base pair sequenced was calculated for each metagenome and plotted in boxplots and statistically

compared by VLP or bulk metagenome status using the ‘ggboxplot’ function from the ‘ggpubr’ package in R. For the Shkoporov

et al., 2019 study, one time point (T8) of the ten individuals in the study was processed and sequenced using both VLP-enrichment

and bulk methods. There were two VLP metagenomes and one bulk metagenome per individual for that time point. The number of

viral contigs assembled per base pair sequenced and the median contig lengths per individual were also plotted in boxplots and

comparative statistics were performed using the ‘ggboxplot’ function from the ‘ggpubr’ package in R. The total number of viral pop-

ulations detected per base pair sequenced was calculated and, for the VLP samples, the values were averaged. The averaged VLP

value and the bulk metagenome were then plotted using ‘ggplot2.’

Clustering Studies Based on Shared Viral Populations
To test how studies clustered together, the viral population presence-absence data from individuals (or pooled read sets) within a

study were merged. In Study 1, individual A had viral populations 1, 2, 4, 5 and individual B had viral populations 3, then Study 1

had viral populations 1, 2, 3, 4, and 5. The different studies were then assessed for the number of shared viral populations that

were present in both studies. These values were then displayed and hierarchically clustered using the R ‘pheatmap’ package.

The resulting hierarchical clusters were used as guides to divide the studies into four groups (I-IV). The number of shared viral pop-

ulations in metagenomes within each study in each group were clustered using the R ‘SPIEC-EASI’ package (method=’mb’,lamb-

da.min.ratio=1e-2,nlambda=20,icov.select.params=list(rep.num=50; Kurtz et al., 2015) to infer associations between samples

based on the shared number of viral populations. Each network for each group was plotted using the R ‘igraph’ package.

Identifying crAssphage Populations
CrAssphage viral populations in GVD were identified by using BLASTn against the crAssphage genomes identified in (Guerin et al.,

2018). Those with >80% ID acrossR50% the length of the GVD viral genome were classified as crAssphage. In total, there were 70

unique crAssphage populations.

Core Viral Population Analyses
To explore if there were any core viral populations, the abundance table was turned into a binary presence-absence matrix using the

‘biomod2’ package in R. The number of GVD samples that each viral population was detected within was then calculated using R and
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divided by the total number (2,697) ofmetagenomes to get the percentage ofmetagenomic samples. Each viral population’s percent-

age was plotted in hive plot using ‘geom_curve’ in ggplot2 (Ginestet, 2011). CrAssphage populations were replotted on top of the all

viral populations to differentiate them. The number of viral populations that were present across different percentages were calcu-

lated using R and their distributions plotted using ‘geom_histogram’ in ggplot2.

Assessing the Impact of Age on Viral Diversity in the Gut Virome
Because no single study in GVD has samples that spanned all of the human life stages (infancy, childhood, adulthood, and

senescence), we needed to combine samples from multiple different studies. Due to unequal sequencing and MDA, which

skews population abundances, across GVD, we chose to use the number of viral populations per clean base pair sequenced

as a proxy for viral richness. If multiple metagenomes were collected for a single individual the number of viral populations per

base pair sequenced per metagenome was averaged. We the ran a Kruskal-Wallis test in R between viral populations per base

pair sequenced and study which shows revealed that study origin was driving significant differences in viral richness values.

Next, to visualize potential study outliers that could be driving this correlation, the number of viral populations per base

pair sequenced per study was plotted using the ‘ggboxplot’ function from the ‘ggpubr’ package in R. The 75% and 25% quan-

tiles number of viral populations per base pair sequenced across all metagenomes were calculated using base R and plotted

over the boxplots. Studies with medians that fell outside of 25-75% quantile range were considered outliers. To assess what

was driving the outlier status of these studies, we tested all the parameters that we had information across all the studies

including sequencing platform, enrichment type (bulk or VLP), and MDA-treatment. First, we sequentially and additively tested

the impact of sequencing platform, enrichment type (bulk or VLP), and MDA using comparative statistics from the ‘ggpubr’

package in R and plotted the results using ‘ggboxplot’ function in the same package in R. The 454, bulk, and non-MDA studies

were removed as outliers.

Next, we assessed what could be driving potential confounders among individuals in these remaining studies by testing the impact

of geographic origin (Western or non-Western) and health status (healthy or diseased) on the number of viral populations per base

pair sequenced. Again, comparative statistics were calculated using the ‘ggpubr’ package in R and plotted using the ‘ggboxplot’

function in the same package in R. Because the non-Western, diseased individuals were significantly different, they were removed

as potential confounders for when looking at the impact of age. The remaining individuals represented 151 healthy Western individ-

uals across 11 different studies. The number of viral populations per base pair sequenced for these remaining individuals were plotted

by study using the ‘ggboxplot’ function from the ‘ggpubr’ package in R. The 75% and 25% quantiles number of viral populations per

base pair sequenced across all metagenomes were calculated using base R and plotted over the boxplots. All the studies now had

medians that fell within the 25-75% quantile range and were kept for further analyses. A final Kruskal-Wallis test in R revealed that

study origin was no longer significantly driving differences in viral richness values.

The remaining individuals were partitioned into life stages based on age: infancy (0-3 years old), childhood (3-18 years old),

adulthood (18-65 years old), and senescence (65+ years old). In total, there were 28 infants, 12 children, 95 adults, and 20

elderly individuals. We next removed outlier individuals per life stage by removing the individuals that had number of viral

populations per base pair sequenced that was greater than 1.5 times the interquartile range. After removal of these life stage

outliers, there were 27 infants, 11 children, 93 adults, and 20 elderly individuals. We also were curious about how different

viral types (bacteriophage and eukaryotic viruses) and different viral families including crAssphage varied across the life stages.

Using the taxonomy as a guide, we pulled out the total number of each of the aforementioned categories per individual

and divided by the total base pair sequenced. We plotted the data two ways. The first way was using boxplots to statistically

assess differences between the life stages using the ‘ggboxplot’ function from the ‘ggpubr’ package in R. The second way was

using Loess smoothing. To perform the Loess smoothing, each life stage was counted as a unit of 1, so infancy was 1, child-

hood 2, adulthood 3, and senescence 4. The number of viral populations per base pair sequenced per life stage was then

plotted using Loess smoothing (span = 1) in the ‘ggplot2’ package in R. The Loess curves were then put on the same axis

from their maximum to the minimum value in order to better visualize each curve and compare trends in Figure 7A. The binary

presence-absence data for the crAssphage populations across all 151 healthy Western individuals were plotted using pheat-

map in R. Lastly, because we also had a single study that had non-Western, Chinese adults and elderly individuals (Ma

et al., 2018), we also statistically evaluated if they were different and plotted the number of viral populations per base pair

sequenced using the ‘ggboxplot’ function from the ‘ggpubr’ package in R.

Removing Potential Contaminants and Validating the Impact of Age on Viral Diversity in the Gut Virome
Given that only 1 of the 32 studies within GVD sequenced and publicly provided the data for blank, negative controls, removing

potential contaminants was difficult. Contaminants by definition should be in low abundance in a study and most likely are found

only in on study. Thus, to identify potential contaminant viral populations, we took a very liberal approach (i.e. we identified and

removed all populations that had the potential to be contamination). We first normalized the raw abundances per study using

the number of base pairs sequenced. Thus, samples were scaled to the sample with the most base pairs sequenced. We then

ran rank abundance curves on all the detected GVD viral populations per study using the BiodiveristyR package in R. Populations

in the rare-tail of the rank abundance curves (proportion < 0.1) were putatively considered contaminants. These initial putative

contaminants per study were checked to see if they were detected in any other study. If they were detected, they were removed

from the contaminant list. All other rare-tail viral populations were considered contamination. In total, there were 19,551 putative
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contaminant viral populations using this liberal approach. These viral populations were removed from further analyses and the

same analyses described in the methods section ‘‘Assessing the Impact of Age on Viral Diversity in the Gut Virome’’ was repeated

with the putative contaminants removed.

QUANTIFICATION AND STATISTICAL ANALYSES

Please refer to figure legends and Method Details for full details on statistical analysis.
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