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Highlights
e Assembly of 2,697 gut metagenomes from 32 studies
exposed 33,242 viral populations

e Inter-study analyses reveal strong study biases at the viral
population-level

e Viral population detection was higher in bulk versus VLP-
enriched metagenomes

e Gut viral diversity is age-dependent across healthy, Western
people
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In Brief

At least 32 studies to date have looked at
the human gut virome but with limited
consistency. Gregory and Zablocki et al.
curate and aggregate these data to
provide a systematic virome database;
use it to assess study biases, global
ecological patterns; and show how
viromes evolve throughout the human
lifespan.
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SUMMARY

The gut microbiome profoundly affects human health and disease, and their infecting viruses are likely as
important, but often missed because of reference database limitations. Here, we (1) built a human Gut Virome
Database (GVD) from 2,697 viral particle or microbial metagenomes from 1,986 individuals representing 16
countries, (2) assess its effectiveness, and (3) report a meta-analysis that reveals age-dependent patterns
across healthy Westerners. The GVD contains 33,242 unique viral populations (approximately species-level
taxa) and improves average viral detection rates over viral RefSeq and IMG/VR nearly 182-fold and 2.6-fold,
respectively. GVD meta-analyses show highly personalized viromes, reveal that inter-study variability from
technical artifacts is larger than any “disease” effect at the population level, and document how viral diversity
changes from human infancy into senescence. Together, this compact foundational resource, these stan-
dardization guidelines, and these meta-analysis findings provide a systematic toolkit to help maximize our

understanding of viral roles in health and disease.

INTRODUCTION

The human gut microbiome is now thought to play an integral
role in health and disease (Clemente et al., 2012; Gilbert et al.,
2018; Lynch and Pedersen, 2016; Schmidt et al., 2018).
Persistent alterations in the structure, diversity, and function
of gut microbial communities—dysbiosis—are increasingly
recognized as key contributors in the establishment and main-
tenance of a growing number of disease states (Frank et al.,
2007; Human Microbiome Project Consortium, 2012; Qin
et al., 2012), including obesity (Turnbaugh et al., 2006) and
cancer (Yoshimoto et al., 2013). Gut dysbiosis can develop
from complex interplays between host, cognate microbiota,
and external environmental factors (Mirzaei and Maurice,
2017; Shreiner et al., 2015). Within the gut microbial con-
sortium, the bacteriome has been the most extensively stud-
ied, where significant shifts in population dynamics have
been observed between healthy and diseased individuals
(Zhang et al., 2015). However, emerging views (Mirzaei and
Maurice, 2017; Ogilvie and Jones, 2015; Tetz et al., 2017)
suggest that the gut virome plays an important role in homeo-
static regulation and disease progression through multiple
interaction paths with the co-occurring bacteriome and even
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directly with human immune system components (Keen and
Dantas, 2018).

The first step in studying viruses in complex communities is
being able to detect them. Problematically, identifying viral
sequences in large, mixed-community datasets is notoriously
challenging. Because viruses lack a universal viral marker
(Rohwer and Edwards, 2002), as opposed to bacterial 16S
rRNA for example, human gut microbiome studies have most
commonly used sequence homology searches with BLAST or
Kraken (Wood and Salzberg, 2014) against NCBI viral Reference
Sequence Database (RefSeq) (https://www.ncbi.nlm.nih.gov/
genome/viruses/), ACLAME (a mobile element genome data-
base [Leplae et al., 2009]) or custom hidden Markov model
(HMM) databases (e.g., Prokaryotic Virus Orthologous Groups
[PVOGs] [Grazziotin et al., 2017]). Although there is now a suite
of virus identification tools available, including DeepVirFinder
(Ren et al., 2018), MARVEL (Amgarten et al., 2018), VIBRANT
(Kieftet al., 2019), and VirSorter (Roux et al., 2015), only the latter
has been used in the human gut microbiome literature to date
and all are dependent upon reference genome databases to
some degree. Further, once viruses are detected there is no
standard applied on how viral contigs translate into “species”-
level sequences that are to be used as a “working” virus pool
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Figure 1. Overview of Studies Comprising the Gut Virome Database (GVD)

Global heatmap of the world showing the number and distribution of studies per country. Each white box represents a different continent and contains information
about the number of individuals sampled represented by the filled human pictograms and percentage of the total GVD sequencing effort for VLP-enriched (red pie
charts) and bulk metagenomes (yellow pie charts) of each country studied within that continent.

See also Table S1.

for downstream analysis. The lack of viral analysis standards
could partly explain the estimated, highly variable (14%-87%)
(Mirzaei and Maurice, 2017) rates of virus detection between
studies. In addition, factors such as differences in sample pro-
cessing (Shkoporov et al., 2018), broad under-representation
of viral genome space in reference databases (Wang, 2020),
lack of culturable host gut microbes (Wang, 2020), and inter-in-
dividual variation add further variability (Shkoporov et al.,
2019). Further, although viral reference datasets are being
generated at unprecedented rates (Roux et al., 2019), these
new data are rarely incorporated for cross-comparisons, which
would inflate virus novelty in new datasets and/or leaves many
virus sequences undetected. In response to these challenges
and to enable virome-centric research in health and disease,
we sought to establish a comprehensive, easy-access database
dedicated to human gut viruses. This effort would enable future
gut microbiome research by augmenting virus detection and
helping establish processing standards for human gut viruses.
Here, we (1) collected and curated 2,697 human gut metage-
nomes previously studied for viruses and published as of
October 2019 to build the human Gut Virome Database (GVD),
(2) evaluated its utility against the best available databases (Na-
tional Center for Biotechnology Information [NCBI] viral RefSeq
and Integrated Microbial Genome/Virus [IMG/VR] [Paez-Espino
et al., 2018]), and (3) used it in meta-analyses to assess method-
ological effects and establish large-scale patterns of gut virome
diversity during the course of the human lifespan. The GVD’s
2,697 human gut metagenomic datasets derive from 32 studies
and encompass 1,986 individuals from 16 countries that origi-
nated either from virus-like particles (VLPs) or whole microbial
communities (bulk), as well as several datasets that included
RNA sequencing data derived from VLPs. All these datasets
were previously studied for viruses, but by using highly variable

methods. For the GVD, we in silico re-processed these data to
identify viral populations and rigorously remove contamination.
This GVD resource is now available on iVirus (Bolduc et al.,
2017a) and will be regularly updated.

RESULTS AND DISCUSSION

The GVD Contains 33,242 Unique Viral Populations,
Dominated by Phages

To build the GVD, 2,697 metagenomic samples from 1,986 indi-
viduals were processed from datasets publicly available as of
December 2019 (n = 32) (see Table S1), along with one unpub-
lished dataset where access was granted prior to publication.
These studies represent 5.35 Tbp of sequence data, derived
from a spectrum of gut virome study areas including the
following: (1) healthy gut viromes of infants (Lim et al., 2015;
Reyes et al., 2010) and adults (Ly et al., 2016; Manrique et al.,
2016; Minot et al., 2011, 2012, 2013; Rampelli et al., 2017), as
well as individuals experiencing (2) fecal microbiota transplant
(FMT) for autism and Clostridium difficile infection (Broecker
et al., 2016, 2017; Chehoud et al., 2016; Draper et al., 2018;
Kang et al., 2017; Zuo et al., 2018), (3) inflammatory bowel dis-
ease (IBD) (Fernandes et al., 2019; Norman et al., 2015; Pérez-
Brocal et al., 2013; Zuo et al., 2019), (4) HIV infection (Monaco
et al., 2016), (5) type | and Il diabetes (Aiemjoy et al., 2019;
Kramna et al., 2015; Ma et al., 2018; Zhao et al., 2017), (6) malnu-
trition (Reyes et al., 2015), and (7) chronic fatigue syndrome (Gi-
loteaux et al., 2016) and hypertension (Han et al., 2018) (see Ta-
ble S1). These datasets were globally distributed (Figure 1).
However, most of the studies originated from the United States
(38% of GVD studies), and the highest number of sampled indi-
viduals and base pairs (bps) sequenced came from Chinese co-
horts (44% of individuals and 75% bp sequenced in the GVD). All
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reads from both bulk and VLP metagenomes (48% and 52% of
the GVD, respectively) were processed consistently, assembled
into contigs, and viral-like sequences were identified by using
three independent methods (Figure S1; see Method Details).
Each low-scoring prediction was validated by cross-compari-
sons between methods and subsequently evaluated for false
positives by detecting whether candidate virus sequences con-
tained benchmarking universal single-copy orthologs (BUSCO)-
related host single-copy genes (Simao et al., 2015) and for the
presence of viral family proteins (VPFs) (Paez-Espino et al.,
2018)). Confidence scores associated with each virus detection
method and potential false positives are reported in Table S2. To
avoid duplicate viral genomes and/or partial virus genomes
across the datasets, contigs were de-replicated by clustering
sequences according to percentage of average nucleotide iden-
tity (ANI) and sequence length. Multiple reports (Brum et al.,
2015a; Duhaime and Sullivan, 2012; Duhaime et al., 2017; Greg-
ory et al., 2019a, 2016; Roux et al., 2019) have revealed that
>95% ANI was a suitable threshold for defining a set of closely
related discrete “viral populations”; follow-on studies suggest
that this cut-off establishes populations that are largely concor-
dant with a biologically relevant viral species definition (Bobay
and Ochman, 2018; Gregory et al., 2019a, 2016). Using this clus-
tering strategy, we identified highly variable numbers of unique
viral populations per study (range: 0-14,018 viral populations;
mean = 1,581) (Figure S2A). The GVD comprises 57,605 viral
contigs and 33,242 viral populations (>5 kb or >1.5 kb and cir-
cular contigs; N50 = 15,395 bp; L50 = 105,286 bp) and mostly
bacteriophages (97.7% of GVD). For context, NCBI’s viral Re-
fSeq (v98, released January 2020) database holds 12,183 vi-
ruses of eukaryotes, bacteria, and archaea from all environ-
ments, combined. Specifically for bacteriophages, the GVD
contains 12-fold more than the entire set of cultured phage iso-
lates in viral RefSeq to date. Thus, the GVD greatly augments the
repertoire of known phages in the human gut. Importantly, due to
a lack of negative controls across 31 out of the 32 studies in the
GVD, there is a chance that some of the viral populations
included in the GVD might result from contamination. This
paucity of negative controls is currently a limitation to gut virome
studies.

Taxonomically, 97.7% of GVD viral populations are bacterial
viruses (i.e., phages), 2.1% are eukaryotic viruses, and 0.1%
are archaeal viruses (Figure 2A). The 712 eukaryotic viruses
were taxonomically diverse (from 23 families), dominated by sin-
gle-stranded DNA (ssDNA) families Anelloviridae (71%), Ge-
nomoviridae (8%), and Circoviridae (8%), all of which have
been previously reported in the datasets underlying the GVD
(Monaco et al., 2016), with the exception of Genomoviridae.
Three single-stranded, positive-sense RNA virus families were
detected (Table S3), represented by 34 viral populations (0.1%
of the GVD). The human Picornaviridae was the most repre-
sented (parechoviruses, coxsackievirus, cosaviruses, entero-
virus, and hepatovirus), along with 8 plant or fungal viruses of
the Alphaflexviridae and Virgaviridae and one putative member
of Cruliviridae. Detection of plant viruses has been reported
before (Zhang et al., 2006) and is likely the result of transient pas-
sage through dietary habits. Human picornaviruses associated
with gastrointestinal tract disorders were to be expected, and
most derived from a Cameroonian patient cohort selected for
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gastroenteritis symptoms, in which the study design included
RNA sequencing (Yinda et al., 2019). The low number of recov-
ered RNA viruses (0.1% of the GVD) (see Tables S2 and S3) in
the GVD might stem in part from having a few studies (6 out of
32) that included viral RNA sequencing. More importantly, the
likely biggest factor contributing to low RNA virus detection is
that de novo RNA virus identification method development is
an ongoing effort (Shi et al., 2016; Starr et al., 2019), such that
RNA virus diversity in gut viromes (and generally in viral metage-
nomes) is likely vastly undersampled and that our detection is
limited to homology to well-characterized pathogens (Zhang
et al., 2019). Among the phages, 88% did not have International
Committee on Taxonomy of Viruses (ICTV) classification, and the
remaining fraction comprised of double-stranded DNA (dsDNA)
tailed phage families (Siphoviridae, Myoviridae, Podoviridae, and
Ackermannviridae), Microviridae, and Inoviridae (see Table S2).
Twenty-four unknown archaeal viral populations were detected,
but none with close genome and/or gene homology to any of the
classified archaeal viruses. Notably, our naive viral taxonomic
assignments using “a majority-rules approach” (see Method De-
tails) led to taxonomic assignments that recent literature has
shown are erroneous and due to methodological artefacts,
such as Phycodnaviridae and Mimiviridae (Sutton et al., 2019),
so we manually removed such taxa. Thus, given that most of
the viral populations are represented by fragments of their ge-
nomes, taxonomic assignments using the “a majority-rules
approach” will improve and be refined as more complete
genome representatives are sequenced and assembled. None-
theless, the high number of unclassified phages likely results
from the underrepresentation of human gut phages in reference
databases and further highlights how much viral diversity re-
mains to be characterized in the human gut.

To fill this phage and archaeal virus taxonomic classification
gap, we used an extensively validated (Adriaenssens et al.,
2020; Bolduc et al., 2017b; Jang Bin et al., 2019), genome-
based, gene-sharing network strategy that de novo predicts
genus-level groupings (“viral clusters” [VCs]) from viral popula-
tion data. A network (Figure 2B) computed from 15,330 GVD
phage genomes (only those >10 kb in length; 46% of GVD) and
2,191 reference phage genomes (from NCBI Viral RefSeq
version 88) revealed 2,048 VCs. Of these, 1,666 VCs were exclu-
sively composed of GVD genomes (7,055 viral genomes or
~46% of GVD genomes), whereas 125 VCs contained genomes
from both RefSeq and the GVD (600 viral genomes or ~4% of
GVD genomes) and 257 VCs were exclusively composed of Re-
fSeq taxa. Thus, the GVD augments the current number of ICTV-
recognized phage genera approximately 3.5-fold. Although not
explored here, given that our goals focused on taxonomic clas-
sification, the shared protein content within and between VCs
calculated in our network analyses could be used to guide
gPCR assays for next-generation sequencing validation
(Monaco and Kwon, 2017) and/or tracking of viruses at either
the viral population or genera level under changing conditions
(Kramna et al., 2015).

Next, we sought to link the GVD phage and archaeal viral
populations to their hosts by using in silico strategies (see
Method Details). In total, we were able to identify the hosts
down to the microbial taxonomic family (Genome Taxonomy
Database [GTDB] taxonomy) (Parks et al., 2018) of ~42%
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(A) Pie charts showing the number of bacteriophages, eukaryotic viruses, and archaeal viruses in the GVD (center) and their familial taxonomic composition by the

bacteriophages (left) and the eukaryotic viruses (right).

(B) Gene-sharing taxonomic network of the GVD, including viral RefSeq viruses v88. RefSeq viruses are highlighted in red. Every node represents a virus genome,
whereas connecting edges identify significant gene-sharing between genomes, which form the basis for their clustering in genus-level taxonomy.

(C) Concentric pie chart showing the number of annotated bacterial host phyla (inner) and family (outer) of the GVD viruses. Host taxonomy follows the
GTDB database taxonomic classifications, and putative host information per each viral population is listed in Table S2. See also Figures S1 and S2 and Tables S2,

S3, and S6.

(n = 13,954) of the viral populations (see Table S2). The most
common identifiable hosts (Figure 2C) across GVD viral popu-
lations belonged to the bacterial phyla Firmicutes (GTDB Firmi-
cutes, Firmicutes_A, and Firmicutes_C combined; 49.3%) and
Bacteroidetes (GTDB Bacteroidota; 33.7%), consistent with
our knowledge that Firmicutes and Bacteroides are the most
prominent bacterial phyla in the human gastrointestinal tract
(Eckburg et al., 2005). Notably, Firmicutes typically outnumber
Bacteroidetes in unhealthy individuals with metabolic and
digestive disorders (Broecker et al., 2016; Chehoud et al.,
2016; Ley et al., 2005; Nicholson et al., 2012; Norman et al.,
2015; Ott et al., 2004; Zhao et al., 2017) and GVD metage-
nomes are biased toward unhealthy individuals (>60% of the
metagenomes comprising >83% of the bps sequenced), which

might account for the increased Firmicutes viral populations
in GVD.

The GVD Significantly Improves Virus Detection over
Current Viral Genome Databases

To assess the value of the GVD, we quantitatively evaluated virus
identification sensitivity between multiple databases by
comparing the number of viral populations identifiable by read
recruitment against GVD, NCBI’s viral RefSeq v96, DOE’s IMG/
VR v4 (Paez-Espino et al., 2018) and the individual virome data-
bases from each study (Figure 3; see Method Details). To control
for assembly improvements since the original metagenome and/
or virome datasets were published, for the latter, we individually
assembled the original viromes into viral populations for read

Cell Host & Microbe 28, 724-740, November 11, 2020 727
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Figure 3. GVD As a Reference Database Increases Viral Population Detection
Boxplots showing median and quartiles of the number of viral populations detected per study using the individual virome, Viral Refseq v96, JGI IMG/VR v4, or
GVD databases. All pairwise comparisons were performed by using Mann-Whitney U tests. Non-significant p values are denoted as “ns.”

See also Figure S3 and Table S4.

recruitment. NCBI viral RefSeq was the most commonly used
viral genome database across the studies surveyed here, being
used in 23 of 29 studies where the specific database used was
documented (information on the genome database used was un-
available for three studies; see Table S1), and hosted 9,294 virus
genomes already de-replicated (as of v96, November 2019, used
here). In comparison, the IMG/VR database was not docu-
mented as being used by any of the 32 studies gathered, despite
the latest release (v4, July 2018, used in this study) containing
nearly two orders of magnitude more virus genomes and
genome fragments (760,453 virus contigs, though not de-repli-
cated). For comparison purposes to the GVD (see Method De-
tails), we de-replicated the IMG/VR contigs the same way as
we did the GVD to obtain viral-population-level genomes. This
yielded 359,826 viral populations for the IMG/VR database.

In 31 out of the 32 total studies tested (Figure 3), the GVD
enabled the detection of significantly more viruses than viral Re-
fSeq v96 (Mann-Whitney U tests; p < 0.05; 182 [average] + 390
[standard deviation]-fold increase) and individual viromes
(Mann-Whitney U tests; p < 0.05; 6-fold + 40-fold increase).
Notably, the proportion of the metagenome mapping to the
GVD was highly variable between studies (Figure S2B) and, as
expected, a higher proportion of VLP-enriched metagenomes
mapped to the GVD than did bulk metagenomes (Figure S2C).
There was a single study (Reyes et al., 2010) in which no viruses
were detected (see Method Details) in all databases queried in
this analysis. In comparison to IMG/VR, we detected more vi-
ruses with the GVD in all studies, 15 (47% from total) of which
were in a significant manner (Mann-Whitney U tests; p < 0.05;
2.6-fold = 2.1-fold increase) (Figure 3). Five of the remaining four-
teen studies had too low of a sample size and/or number of de-

728 Cell Host & Microbe 28, 724-740, November 11, 2020

tected viruses to statistically compare the GVD and IMG/VR.
Additionally, we tested the ability of the GVD to increase the
number of viral populations detected in a study not included in
the GVD (Clooney et al., 2019) (Figure S3A). We saw similar re-
sults, and GVD significantly outperformed viral RefSeq v96 and
the individual virome while having a non-significant higher me-
dian number of viral populations detected than IMG/VR.

When we considered the number of reads that recruited
across the different databases across all studies, significantly
more reads (Mann-Whitney U tests; p < 0.05) were recruited to
the GVD than to any other database across 19 out of the 32
studies (Figure S3B). After GVD, IMG/VR was the next best per-
forming database for viral detection in the human gut, given that
our tests showed an average of 64-fold + 120-fold increase over
viral RefSeq (Mann-Whitney U tests; p < 0.05). IMG/VR was ex-
pected to surpass viral RefSeq because it aggregates both culti-
vated reference virus genomes from RefSeq, >12,000 pro-
phages, and >700,000 uncultivated virus genomes and/or
fragments from many environments, including multiple human
body sites (Paez-Espino et al., 2018). Overall, the significant in-
crease in virus detection by the GVD over other databases high-
lights the low representation of gut viruses in RefSeq and thus
demonstrates the value of the GVD for sequence-based virus
identification in human gut microbiome datasets. Thus, given
that the GVD significantly improves viral detection over current
viral genome databases, we used the GVD as the database for
all remaining analyses in this study.

The Human Gut Virome Is Highly Person Specific
In light of the current hypothesis of a “core” gut virome (Manri-
que et al., 2016), we were first curious whether any GVD viral
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Figure 4. Individual Viromes Study Databases and Cross-Study Comparisons

Shown at the top left is a hierarchically clustered heatmap showing the number of viral populations shared within and between studies clustered into four groups
(I-1V). Viral population co-occurrence network per individual within each study per group. Shown on the bottom right is a hierarchically clustered heatmap
showing the number of viral genera shared within and between studies clustered into three groups. Viral genus cluster co-occurrence networks per metagenome
within each study per group. Colored dots and pictograms next to study names in heatmaps represent metagenome type and a common disease studies across

all 32 studies in GVD, respectively.
See also Figure S4.

population was found across a high percentage or all metage-
nomes in the GVD. On average, 542 + 726 (average + SD; range:
0-6,420) viral populations were detected per metagenome, but
not a single viral population was found across all metagenomes.
In fact, the most ubiquitous viral population in the GVD was
found in only 39% of the metagenomes, 128 viral populations
occurred in more than 20% of the metagenomes, and most

(69% or 22,913) of the viral populations were only sporadically
detected at all (<0.5% of the metagenomes) (Figures S4A and
S4B; Table S4). Further, we specifically looked at the prevalence
of crAssphages, a well-recognized, multi-genera family of
phages known to be widespread in gut viromes (Guerin et al.,
2018) (Figure S4B). In total, we identified 70 crAssphage popula-
tions (see Method Details), 30 of which had genomes >10 kb
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Figure 5. VLP-Enriched (VLP) and Bulk Metagenomes Comparisons for Studying Viruses in the Human Gut

(A-C) Boxplots showing median and quartiles of the number of assembled contigs per base pair sequenced per study (A) of VLP and bulk metagenomes, (B) of
VLP metagenomes with and without MDA, and (C) of the different VLP-enrichment methodologies across the studies. Outlier dots were removed from plot (C) to
better show the range of values. The n value above each box plot represents the number of studies using each VLP-enrichment method.

(D) Scatter plot with a linear regression line showing the number of assembled viral contigs per bp sequenced per study with VLP and bulk metagenome studies
identified by different colors. In the inset is a Venn diagram showing the number of GVD viral populations that originated from VLP or bulk or both types of

metagenomes.

(E) Boxplots showing median and quartiles of the number of viral populations detected per bp sequenced per individual of VLP and bulk metagenomes.

(F) Boxplots showing median and quartiles of the number of assembled contigs per bp sequenced (top left) and the median contig length (top right) for VLP and
bulk metagenomes processed for the same samples in the Shkoporov et al, (2019) (bottom). Connected dot plot showing the number of viral populations detected
per bp sequencedby using VLP and bulk metagenomes for each individual in the Shkoporov et al, (2019) study. All pairwise comparisons were performed by using

Mann-Whitney U tests. Non-significant p values are denoted as “ns.
See also Figure S4.

that clustered into 12 VCs (i.e., genus-level grouping) by
genome-based, gene-sharing networks (Jang Bin et al., 2019).
Although together these 70 crAssphage populations are
ubiquitous across the GVD samples, there was not one crAss-
phage viral population found universally, and the most wide-
spread crAssphage population occurred in only 12% of samples.
These findings support the mounting evidence for highly per-
sonal gut viromes, as recently highlighted in twins (Moreno-Gal-
lego et al., 2019) and in ten healthy adults during a year-long
monitoring period (Shkoporov et al., 2019). Although the latter
study pointed to the potential of a core virome at higher taxo-
nomic levels, we failed to recover any universally shared viral
VCs (approximately genus level taxonomy) (Figures S4C and
S4D), given that the most ubiquitous VC was only present in
40% of the metagenomes. That same study suggesting the
potential of a higher-taxon core only looked at ten healthy,
Western adults, and the metagenomes in the GVD represented
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a diversity of people from different geographical regions and
ages. Thus, further studies are necessary to resolve whether a
core virome does exists at higher taxonomic levels.

Varied Processing Methodology Prevents Population-
Level B-Diversity Inter-Study Comparisons

Next, given a systematically processed GVD and its demon-
strably improved virus detection capability, we sought to deter-
mine whether global clustering patterns would emerge viaa GVD
B-diversity (between-sample changes in population composi-
tion) meta-analysis. To this end, we performed population co-
occurrence analyses at two levels of resolution (per study and
across metagenomes within studies) and then evaluated what
level of metadata best captured the resultant variation (method-
ology, disease state, etc.). To assess population-overlap be-
tween studies, we counted the number of GVD viral populations
that recruited reads within and between different GVD studies
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(i-e., the same viral population was detected in >1 metagenome
in both studies compared). We expected studies exploring
similar disease states would share the greatest number of viral
populations. However, hierarchical clustering of the studies on
the basis of the number of shared viral populations revealed
that this was rare and mostly not the case, and studies exploring
the viromes of diseased individuals (e.g., IBD, Clostridium diffi-
cile infection, and diabetes) did not cluster together (Figure 4,
top left—heatmap). Instead, we saw that the different studies hi-
erarchically clustered into four groups (I-1V), and that this clus-
tering was weakly driven around metagenome type; many bulk
metagenomes clustered together into group lIl.

Because the GVD studies did cluster into four distinct groups
(Figure 4, top left—heatmap), we next tested whether any meta-
data best captured the resultant variation across the metage-
nomes within each study within each group. Using an inverse
covariance analysis (i.e. combined partial correlations across
shared viral population between metagenomes) to sub-cluster
the different metagenomes across the studies in each group,
we found that the metagenomes within a study sub-clustered
together irrespective of geographical origin, health status, and/
or diet (Figure 4, top left—networks). Notably, the group Il meta-
genomes derived mostly from bulk metagenomes were more
closely sub-clustered, but they still sub-clustered strongly by
study. This per-study sub-clustering implies that even within
these grouped studies, metagenomes from different studies
are not comparable because the inter-study variation is driven
by methodological impacts. These results reveal that although
methodology does not affect the number of viral contigs recov-
ered, it does affect the recovered types of viruses (see upcoming
findings comparing methodological effects). Interestingly, when
we looked at genus-level (i.e., VC-level) co-occurrence, we
saw that there are still strong groupings (A-C) at the study level,
but within each group, metagenomes across these studies
share many VCs (Figure 4, bottom right). Thus, B-diversity
meta-analysis across all studies exploring the effect of “disease”
across GVD studies is not possible at the population level, but
within similarly processed studies, it might be possible at the
genus level.

To Enrich or Not to Enrich? Viruses Recovered from Bulk
Versus Virus-Particle-Enriched Metagenomes

From a pragmatic point of view, we next wondered whether
GVD datasets could inform experimental design. Specifically,
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Figure 6. More Gut Viruses Are Temperate
Phages than in the Soil and Oceans

Pie charts showing the percentages of temperate
phages found in the human gut (GVD dataset),
soils (IsoGenie dataset), and oceans (Global
Oceans Viromes 2 dataset).

to study viruses, is sequencing effort bet-
ter put into metagenomes of bulk or puri-
fied VLPs? The GVD’s 2,697 gut metage-
nomes are roughly evenly divided across
these two metagenome types with bulk
and VLP metagenomes contributing 2.7
Tbp (~51.4% of GVD) and 2.6 Tbp
(~48.6% of GVD) of data, respectively. Although most samples
only have one or the other data, one study (10 samples) (Shko-
porov et al., 2019) provided both bulk and VLP metagenomes
for 10 samples.

We first assessed whether there was a difference in de novo
viral recovery between VLP and bulk metagenomes (Figure 5A).
We measured viral recovery by using the number of viral contigs
(>5 kb or >1.5 kb and circular in length; i.e., not de-replicated
viral populations) assembled per bp sequenced per study given
that the viral contigs assembled from samples within the same
study are often pooled. These analyses revealed no significant
difference (Mann-Whitney U test; p = 0.25) in the number of viral
contigs assembled per bp sequenced between VLP and bulk
metagenomes, which contrasts viral recovery results from
permafrost soils, where VLP metagenomes outperform bulk
metagenomes by 2-fold (Trubl et al., 2018). However, viral recov-
ery from the GVD’s VLP metagenomes was heterogeneous, so
we evaluated how VLP methodology affected viral recovery.
First, although multiple displacement amplification (MDA) is
known to provide non-quantitative metagenomic datasets with
both systematic and stochastic biases (Solonenko et al., 2013;
Yilmaz et al., 2010), we found no significant difference (Mann-
Whitney U test; p = 0.75) in viral recovery between non-MDA
and MDA-treated metagenomes (Figure 5B). Nonetheless, it
was notable that MDA-treated VLP studies were significantly en-
riched in eukaryotic, ssDNA viruses (Mann-Whitney U tests; p <
0.05), a known bias of MDA (Figure S5A). Second, we tested the
effect of VLP enrichment strategies, which ranged from
removing human and bacterial cells to enrich for VLPs (centrifu-
gation, filtration, CsCl gradients, and nucleases) to concen-
trating the VLPs (centricon concentration and PEG precipitation).
Again, we found no significant difference in the number of viral
contigs recovered (Kruskal-Wallis test; p = 0.47) across the
different VLP enrichment strategies (Figure 5C). Further, we
found that contig sizes were not significantly different either be-
tween VLP and bulk metagenomes (Mann-Whitney U test; p = 1)
(Figure S5B) or across VLP-enrichment strategies (Kruskal-
Wallis test; p = 0.18) (Figure S5C). Although surprising given
that prior work with seawater showed VLP-enrichment methods,
especially at the concentration step (tangential flow filtration
versus FeCl) can have large effects on the number of viral types
recovered (Hurwitz et al., 2013), we note that the concentration
steps tested here are much more similar, with both being phys-
ical steps, in contrast to the physical and chemical steps tested
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on marine samples. Overall, we found sequencing depth (i.e.
number of bps sequenced) was the only major driver that
increased viral recovery because it was strongly correlated to
the number of assembled contigs in fecal samples (linear regres-
sion; R2 = 0.89 (all), R? = 0.95 (bulk), R% = 0.45 (VLP) Figures 5D,
S5D, and S5E). The non-fecal study of colon biopsies was an
outlier (Zuo et al., 2019).

Importantly, although the number of viral contigs recovered
does not vary across the treatments evaluated here, there are
clear differences between the viruses that are captured by
VLP and bulk metagenomes. In fact, only 10% of the GVD viral
populations (Figure 5D, Venn diagram inset) were recovered in
both VLP and bulk metagenomes, indicating that the different
methods enrich for different virus populations. Analyses of the
10 samples processed by using both VLP and bulk methods
(Shkoporov et al., 2019) revealed a similar overlap (8.5%) of
the viral populations being recovered from both metagenome
types. Mechanistically, this presumably results from bulk meta-
genomes primarily capturing actively infecting viruses or inte-
grated prophages, whereas VLP metagenomes target free viral
particles that would have long residence times in seawater, but
are perhaps much more transient in the gut (Neil and Cadwell,
2018; Shkoporov et al., 2019). Thus, despite no significant dif-
ference in the number of viruses recovered, the two methods
are clearly capturing different subsets of the gut viral commu-
nity such that combined VLP and bulk metagenomes can in-
crease the number of viral populations recovered. Further,
increasing sequencing efforts will increase the number of viral
contigs assembled in fecal samples regardless of enrichment
method.

Next, we assessed viral detection differences between VLP
and bulk metagenomes. Although not all viruses readily
assemble because of low abundances or hypervariable
genomic regions (Pop, 2009), once reference genomes are
available, viral populations outside those de novo assemblies
can be detected via read mapping. We used the GVD as a refer-
ence database and recruited reads from all GVD metage-
nomes. Because read mapping is mostly done per metage-
nome, we evaluated viral detection by using the number of
viral populations detected per bp sequenced per metagenome
(Figure 5E). We found that detection performance by using bulk
metagenomes was significantly higher (Mann-Whitney U test;
p = 2.22e-16) than in VLP metagenomes. These results suggest
that bulk metagenomes provide a clear advantage for viral
detection if searched with a well-furnished database like
GVD. To our knowledge, a quantitative estimate of viral detec-
tion rates between VLP and bulk metagenomes has not been
reported previously in any ecosystem.

To further validate these results, we applied the same analysis
by using only samples in which both bulk and VLP metagenomes
were generated from the same 10 samples, and outside the viral
particle purification step they were identically processed (Shko-
porov et al., 2019). As in our aforementioned results, we found no
significant difference between VLP and bulk number of viral con-
tigs assembled per bp sequenced (Mann-Whitney U test; p =
0.48) (Figure 5F, top left) and higher virus detection was
observed in bulk datasets than in VLP datasets (Figure 5F, bot-
tom). When we looked at the median assembled contig lengths,
VLP contigs were significantly longer than bulk contigs (Mann-
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Whitney U test; p = 0.0011) (Figure 5F, top right). This higher me-
dian contig length contrasts our findings above at the study level.
Nonetheless, we hypothesize that VLP enrichment, in the
absence of more contigs recovered, should assemble longer
contigs when comparing identical samples.

Altogether these findings suggest that, for human gut viruses,
sequencing-effort-normalized viral recovery efficiency is similar
across the suite of commonly used preparation methods, so
bulk metagenomes might be the best choice for future work
because of their ease of preparation compared with that of
VLP metagenomes and because of their higher viral detection
rates. Nonetheless, combining both VLP and bulk metage-
nomes can improve de novo viral recovery. We hypothesize
that the increase in detection performance in bulk metage-
nomes might be driven by the fact that the gut virome is en-
riched in temperate phages (reviewed in Mirzaei and Maurice,
2017), such that when integrated into their hosts genomes as
prophages, these viruses would likely be removed from the
VLP metagenomes in the VLP enrichment process. Analysis
of the number of detectable temperate phages in the GVD,
soil, and marine viral datasets has revealed that gut viruses
have ~2.6- and 4.3-fold more detectable temperate phages
than soil (Emerson et al., 2018; Trubl et al., 2018) and marine
(Gregory et al., 2019a), respectively (Figure 6), indicating that
we most likely are losing more viruses from VLP enrichment
than in other systems.

Human Gut Virome Richness Is Also Impacted by
Methodology, but Is Still Comparable among Some
Studies

Because of the differences in viral detection across VLP and bulk
metagenomes and the difficulty in exploring cross-study B-diver-
sity, we next wanted to determine whether it was even possible
to compare a-diversity (local diversity) across studies. Notably,
a- and B-diversity were theoretically proposed as components
of y-diversity (regional diversity), meaning that they should scale
together (Whittaker, 1960). Nonetheless, using these theoretical
definitions in practice, it is impossible because full species inven-
tories at local and regional scales are difficult to survey (Chao
et al., 2006; Colwell and Coddington, 1994; Plotkin and Muller-
Landau, 2002). Thus, most B-diversity metrics try to be indepen-
dent of a-diversity to account for compositional sampling (Bar-
well et al., 2015; Jost, 2010), resulting in uncoupled a-diversity
and B-diversity metrics often driven by completely different
ecological drivers. This phenomenon has been seen in marine vi-
ruses (Gregory et al., 2019b), soil microbes (Prober et al., 2015),
soil fungi (Chen et al., 2018), and at global scales looking at con-
servation across different ecosystems (Hillebrand et al., 2018).
Given this uncoupling between o- and B-diversity, we evaluated
whether a-diversity could be comparable between studies after
removing confounders.

Given that 96% of the studies in the GVD used MDA, we used
viral richness as our a-diversity metric because it is more insen-
sitive to compositional changes and thus less affected by the
population-abundance-skewing effects of MDA. Further,
because of unequal sequencing depth, we chose to use the
number of viral populations per bp sequenced per individual as
a proxy for viral richness (with viral richness being averaged
across time points for individuals with more than one
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metagenome). Importantly, MDA might also result in low abun-
dance populations not even being amplified, which could lead
to decreased viral richness. An initial exploration of this viral rich-
ness across studies revealed discordance among studies, with
many studies having median viral richness across individuals
above and below the 75% and 25% quantiles, respectively, of
viral richness across all individuals (Figure S6A), and viral rich-
ness strongly correlated by study (Kruskal-Wallis test; p <
2.2e-16).

Across the GVD, the vast majority of studies were lllumina
sequenced (84%), VLP enriched (84%), and MDA treated
(96%) (Table S1). Thus, we hypothesized that studies that did
not have the aforementioned characteristics were most likely
outliers. We sequentially and additively tested the effect of
sequencing platform, enrichment type (bulk or VLP), and MDA
and found that 454 sequenced metagenomes were significantly
different (Figure S6B) (Mann-Whitney U test; p < 9.5e-06) and, of
the remaining non-454 studies, bulk metagenomes were also
significantly different (Figure S6C) (Mann-Whitney U test; p <
2.22e-16). Thus, 454 and bulk metagenomic studies were
removed. Although non-454, VLP-enriched, non-MDA, and
MDA-treated metagenomes were not significantly different (Fig-
ure S6D; Mann-Whitney U test; p = 0.12), non-MDA studies,
which only account for 4% of the studies, were also removed
to maintain consistency among studies and to ensure that the
potential biases introduced by MDA are universal across the
metagenomes assessed. Analyses of viral richness across
studies, nonetheless, still revealed discordance between studies
with viral richness still strongly correlating by study (Kruskal-
Wallis test; p < 2.2e-16).

Geographic origin and health status can also have a huge
effect on the gut virome (Broecker et al., 2016; Ma et al,,
2018; Monaco et al., 2016; Norman et al., 2015). Thus, we
tested the effect of geographic origin (Western or non-West-
ern) and health status (healthy or diseased) on viral richness
(geographic origin and disease state for each metagenome
can be found in Table S5). We found that non-Western individ-
uals have significantly higher viral richness than Western indi-
viduals (Figure S6E) (Mann-Whitney U test; p = 8.6e-07). This
supports previous findings of higher viral richness in non-
Western individuals (Rampelli et al., 2017) and parallels find-
ings of bacterial richness in Western versus non-Western indi-
viduals (Obregon-Tito et al., 2015; Schnorr et al., 2014; Yatsu-
nenko et al., 2012). Next, among the Western individuals, we
found higher viral richness among healthy individuals than
among individuals with disease (Figure S6F) (Mann-Whitney
U test; p = 8.5e-13). This supports previous findings that
show healthy individuals have higher viral richness than do in-
dividuals with Clostridium difficile infection (Zuo et al., 2018)
and IDB in one study (Pérez-Brocal et al., 2013), but contrasts
findings that show viral richness is higher in patients with dia-
betes (Ma et al., 2018) and IBD in other studies (Fernandes
et al., 2019; Norman et al., 2015). Thus, we filtered out non-
Western, diseased individuals. The remaining individuals
from 11 studies represented non-454-sequenced, VLP-en-
riched, MDA-treated metagenomes from healthy, Western in-
dividuals. Across these studies, the median number of viral
richness all fell within the 75% and 25% quantiles of viral rich-
ness across all remaining individuals (Figure S6G), resulting
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in a non-significant association between viral richness and
study (Kruskal-Wallis test; p < 0.09745) and indicating that
the viral richness values across these individuals in these
studies were comparable.

Gut Virome Diversity Is Age-Dependent in Healthy,
Western Cohorts

Beyond using GVD meta-analyses to re-assess existing human
gut virome study conclusions, we next wanted to leverage the
subset of data for which viral richness was identified to be com-
parable (see above), and used it to assess a near-completely
open question: how does age affect gut viral richness? This
filtered dataset (151 healthy, Western individuals, non-454,
VLP-enriched, and MDA-treated) represented individuals whose
ages spanned the different life stages (0-65+ years old) within
the GVD. In total, there were 27 infants (0-3 years old [Lim
et al., 2015; McCann et al., 2018]), 11 children (3-18 years old
[Fernandes et al., 2019]), 93 adults (18-65 years old [Chehoud
et al., 2016; Draper et al., 2018; Ly et al., 2016; Minot et al.,
2012, 2013; Moreno-Gallego et al., 2019; Shkoporov et al.,
2019]), and 20 elderly (>65 years old [Stockdale et al., 2018])
defined as healthy in their respective datasets. Mounting evi-
dence suggests that the human gut bacteriome displays distinct,
age-dependent patterns of diversity (i.e., species richness, as-
sessed with 16S rRNA sequencing), in response to an array of
factors including immune status fluctuations during life (Claes-
son et al.,, 2012; Odamaki et al., 2016; Scepanovic et al.,
2019). However, there are no comparable estimates for the hu-
man gut virome across the lifespan, except in babies (Liang
et al., 2020; Lim et al., 2015).

Using these healthy, Western individuals, we looked at viral
richness across the human life stages (Figure 7A). Across the hu-
man lifespan in the GVD, highest overall viral richness was
observed in infants and adults, and there were significant in-
creases between children and adults (Mann-Whitney U test;
p = 0.034) and significant decreases between adults and elderly
individuals (Mann-Whitney U test; p = 0.014) (Figure 7B, left). The
latter trend was also true for a Chinese cohort (Mann-Whitney U
test; p = 0.00048) (Figure 7B, right) (Ma et al., 2018).

These overall trends, however, did not apply evenly across vi-
rus types. For example, eukaryotic (mostly human Annellovi-
ruses) virus richness (Figure 7A, red curve) is high at infancy, pre-
sumably driven by an underdeveloped immune system, and then
decreases into childhood and remains constant and low through
the rest of life (Figure S7A). In contrast, bacteriophages mirrored
the overall viral richness trend, with the bacteriophage family Si-
phoviridae mirroring the overall viral richness trend the best (Fig-
ures 7A and S7A). This follows our basic understanding of the gut
virome, which suggests that most viruses are temperate bacte-
riophages, of which many are Siphoviridae viruses (Mirzaei and
Maurice, 2017). Curiously, Microviridae richness per bp
sequenced peaked modestly in infancy, dropped in childhood
and then slowly increased across the rest of the lifespan (Figures
7A and S7A).

Given the importance of crAssphages in the human gut
virome literature, we next assessed how its populations per bp
sequenced varied with age. This revealed a relatively constant
upward trend from infancy to elderhood, and the largest shift
occurred between childhood and adulthood (Figures 7A, white
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Figure 7. Viral Diversity across Lifespan in Healthy, Western Individuals

(A) Composite plot showing (from top to bottom) the number of bacterial operational taxonomic unit (OTU) trends across the life stages derived from a literature
review; a map highlighting the origin of the healthy, Western individuals; the number of healthy, Western individuals per life stage; Loess smoothing plots of the
number of viral populations; the number of viral populations by type; the number of viral populations by viral family; and the number of crAssphage populations per
bp sequenced across the life stages in healthy, Western individuals. Box plots showing median and quartiles and Mann-Whitney U test results between the

different life stages can be found in Figure S7.

(B) Box plots showing median and quartiles of the number of viral populations per bp sequenced across the life stages across healthy, Western individuals (left)
and across adults and elderly individuals from non-Western Chinese individuals (right). All pairwise comparisons were performed by using Mann-Whitney U tests.
(C) Presence absence plot showing the distribution of the 70 crAssphage populations in the GVD across the healthy, Western individuals.

See also Figures S6 and S7 and Table S5.

curve, and S7). We were then curious whether this increase was
because of the acquisition of additional crAssphage species
through life or because of the initial crAssphage populations ex-
panding their proportional niche in the gut virome (Figure 7C).
These analyses revealed that crAssphage were not detectable
in infants (except in one individual) or children, which contrasts
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findings from recent studies (Guerin et al., 2018; Liang et al.,
2020). This implies that the large increase in crAssphage popula-
tions per bp sequenced from children to adults was because of
the acquisition of crAssphage. For the increase observed be-
tween adults and the elderly, we saw no significant difference
in the number of crAssphage populations and no changes in
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the crAssphage populations detected between adults and
elderly individuals (Mann-Whitney U tests; p > 0.05). Notably,
because we were using the number of viral populations per bp
sequenced as a proxy for viral richness, changes in this value
can represent an increase in the number of viral populations or
an increase in the proportion of the total virome the viral popula-
tions make up. Thus, we hypothesize that the increase in crAss-
phage from adult to elderly is most likely because of crAssphage
populations taking up a larger proportion of the total gut virome.
All age-dependent viral richness patterns were upheld even after
a stringent removal of 19,551 potential contaminants, defined
here as any population that was rare in any study and only found
in one study (Figure S7B; see Method Details).

Lastly, we wanted to see how these age-dependent viral rich-
ness trends compared with overall bacterial richness trends in
the gut. There are two major paradigms for the life stages of
gut bacterial richness. The first paradigm is that the commensal
gut bacterial richness increases into adulthood and then de-
creases into old age (reviewed in Nagpal et al., 2018). The sec-
ond paradigm is that bacterial richness slowly increases
throughout the lifespan from infancy into old age (reviewed in
Santoro et al., 2018). Some studies attribute this paradigm split
at old age to whether an elderly person is living in a nursing
home or in the broader community, with those living in nursing
homes seeing a decrease in bacterial richness (e.g. Claesson
etal., 2012) (Figure 7A). Prior analyses of the viral richness none-
theless revealed no difference between elderly individuals living
in nursing homes or the community (Stockdale et al., 2018); thus,
all of the GVD elderly individuals, who coincidentally were from
that study, were included regardless of where they lived. Here,
we found the viral richness fluctuations broadly related to bacte-
rial richness trends in bacterial richness paradigm one, but with a
strong deviation at infancy, where most likely the weak, underde-
veloped immune system and lack of epithelium-protecting
commensal bacterial allows for viral infection of human cells (Fig-
ure 7A). The presence of many eukaryotic viruses was also pre-
viously found in babies (Liang et al., 2020; Lim et al., 2015). An-
alyses of human cohorts after the first paradigm suggest that
increased bacterial inter-species competition over the lifespan
induces the establishment of more successful strains of the
same species, thus reducing richness into old age (Aleman
and Valenzano, 2019). It remains unclear whether this inter-spe-
cies competition affects viral richness, but given the parallels be-
tween bacterial and viral richness, we hypothesize it most likely
plays a role for both. This inter-species competition might also
help explain the crAssphage trend, in which Bacteroides
(crAssphage’s host) gain a stronger foothold into older years,
thus increasing crAssphage abundance. Overall, these results
suggest that, like gut bacterial richness, gut viral richness is
also age dependent.

Conclusions

The lack of a curated database for the detection of viral se-
quences in the human gut has been identified as the most critical
shortcoming of applying metagenomic approaches to studying
the human gut virome (Shkoporov and Hill, 2019). Although sam-
ple preparation standards are emerging for human gut viromics
(Shkoporov et al., 2018), the field currently lacks an equivalent
for in silico virus analytics. The GVD and its associated contig
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processing methods are geared towards filling this standardiza-
tion gap and performs well beyond “classical” databases used
across the field.

However, the GVD dataset currently suffers from several lim-
itations. First, the geographic and ethnic representation across
the dataset is not very broad. Meta-analyses will benefit from
more broadly representative datasets as they become avail-
able. Second, there are many more human gut and other hu-
man-associated bulk metagenomic datasets and, if mined for
viruses, these could be a rich source for virus reference ge-
nomes as found for soils (Emerson et al.,, 2018) and the
large-scale Earth Virome study (Paez-Espino et al., 2016). In
addition, given the current challenges in RNA virus discovery
in metagenomic datasets (Greninger, 2018), the extent of
RNA viruses in the human gut is likely underestimated. Lastly,
GVD viral contigs, even though a conservatively determined da-
taset, might contain other non-viral mobile elements that
possess phage-like characteristics, such as gene transfer
agents and defective prophages.

The GVD, combined with the means to classify uncultivated
virus genomes (Jang Bin et al., 2019), are prime starting re-
quirements for enabling ecosystem-wide examinations (Roux
et al., 2016) of the dynamics and effects of the virome within
the human gut. For example, here, we used the GVD database
to uncover the age-dependent patterns of virome diversity in
healthy, Western individuals. However, the GVD could also
have much broader implications including helping better clas-
sify individuals’ native gut microbiomes and viromes to deter-
mine how it affects a person’s predisposition to diseases like
COVID-19 (Gou et al., 2020). Outside of the human ecosystem,
the GVD could have potential use to increase viral detection in
a broader context, such as animal gut microbiomes or aquatic
samples being analyzed for fecal contamination monitoring.
Other environmental advances also invite such studies to
include assessing the role of micro- and macro-diversity on vi-
rus persistence (Gregory et al., 2019a), and metabolic reprog-
ramming via virus-encoded auxiliary metabolic genes (Emerson
et al., 2018; Roux et al., 2016) and without that could drastically
alter the ecosystem outputs of any infected cell (Howard-Var-
ona et al., 2020). These combined eco-systems biology efforts
are critical to enable studies of the human gut virome to
advance from ‘“stamp collecting” diversity studies towards
the kinds of comprehensive efforts needed to incorporate vi-
ruses into mechanistic, predictive models. Such efforts, with
future viral mapping outside the gut to parallel efforts for the
“non-gut” human microbiome (Pasolli et al., 2019), should
help transform personalized medicine and lead to a better un-
derstanding of human ecosystems.
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STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Aiemjoy et al., 2019 sequencing reads Aiemjoy et al., 2019 NCBI Sequence Read Archive (SRA) -
see Table S1 for details

Broecker et al., 2016 sequencing reads Broecker et al., 2016 NCBI Sequence Read Archive (SRA) -
see Table S1 for details

Chehoud et al., 2016 sequencing reads Chehoud et al., 2016 NCBI Sequence Read Archive (SRA) -
see Table S1 for details

Clooney et al., 2019 sequencing reads Clooney et al., 2019 NCBI Sequence Read Archive (SRA) -
PRJNA552463

Draper et al., 2018 sequencing reads Draper et al., 2018 NCBI Sequence Read Archive (SRA) -
see Table S1 for details

Fernandes et al., 2019 sequencing reads Fernandes et al., 2019 NCBI Sequence Read Archive (SRA) -
see Table S1 for details

Giloteaux et al., 2016 sequencing reads Giloteaux et al., 2016 MG-RAST - see Table S1 for details

Han et al., 2018 sequencing reads Han et al., 2018 NCBI Sequence Read Archive (SRA) -

(originally from Li et al., 2017) see Table S1 for details

Kang et al., 2017 sequencing reads Kang et al., 2017 iVirus - see Table S1 for details

Kramna et al., 2015 sequencing reads Kramna et al., 2015 NCBI Sequence Read Archive (SRA) -
see Table S1 for details

Lim et al., 2015 sequencing reads Lim et al., 2015 NCBI Sequence Read Archive (SRA) -
see Table S1 for details

Ly et al., 2016 sequencing reads Ly et al., 2016 NCBI Sequence Read Archive (SRA) -
see Table S1 for details

Ma et al., 2019 sequencing reads Ma et al., 2018 NCBI Sequence Read Archive (SRA) -
see Table S1 for details

Manrique et al., 2016 sequencing reads Manrique et al., 2016 NCBI Sequence Read Archive (SRA) -
see Table S1 for details

McCann et al., 2018 sequencing reads McCann et al., 2018 NCBI Sequence Read Archive (SRA) -
see Table S1 for details

Minot et al., 2011 sequencing reads Minot et al., 2011 NCBI Sequence Read Archive (SRA) -
see Table S1 for details

Minot et al., 2012 sequencing reads Minot et al., 2012 NCBI Sequence Read Archive (SRA) -
see Table S1 for details

Minot et al., 2013 sequencing reads Minot et al., 2013 NCBI Sequence Read Archive (SRA) -

see Table S1 for details

Monaco et al., 2016 sequencing reads Monaco et al., 2016 NCBI Sequence Read Archive (SRA) -
see Table S1 for details

Moreno-Gallego et al., 2019 sequencing reads Moreno-Gallego et al., 2019 European Nucleotide Archive (ENA) -
see Table S1 for details

Neto et al. (unpublished) sequencing reads Unpublished data iVirus
— we were given some of the reads
before publication

Norman et al., 2015 sequencing reads Norman et al., 2015 NCBI Sequence Read Archive (SRA) -
see Table S1 for details

Pérez-Brocal et al., 2013 sequencing reads Pérez-Brocal et al., 2013 NCBI Sequence Read Archive (SRA) -
see Table S1 for details

Rampelli et al., 2017 sequencing reads Rampelli et al., 2017 NCBI Sequence Read Archive (SRA) -
see Table S1 for details

Reyes et al., 2010 sequencing reads Reyes et al., 2010 NCBI Sequence Read Archive (SRA) -
see Table S1 for details

(Continued on next page)

Cell Host & Microbe 28, 724-740.e1-e8, November 11, 2020 e1



¢? CellPress

Cell Host & Microbe

Resource

Continued

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Reyes et al., 2015 sequencing reads

Shkoporov et al., 2018 sequencing reads

Shkoporov et al., 2019 sequencing reads

Stockdale et al., 2018 sequencing reads

Yinda et al., 2019 sequencing reads

Zhao et al., 2017 sequencing reads

Zuo et al., 2018 sequencing reads

Zuo et al., 2019 sequencing reads

Reyes et al., 2015

Shkoporov et al., 2018

Shkoporov et al., 2019

Stockdale et al., 2018

Yinda et al., 2019

Zhao et al., 2017

Zuo et al., 2018

Zuo et al., 2019

NCBI Sequence Read Archive (SRA) -
see Table S1 for details

NCBI Sequence Read Archive (SRA) -
see Table S1 for details
NCBI Sequence Read Archive (SRA) -
see Table S1 for details
NCBI Sequence Read Archive (SRA) -
see Table S1 for details
NCBI Sequence Read Archive (SRA) -
see Table S1 for details
NCBI Sequence Read Archive (SRA) -
see Table S1 for details
NCBI Sequence Read Archive (SRA) -
see Table S1 for details

NCBI Sequence Read Archive (SRA) -
see Table S1 for details

Software and Algorithms

nucmer (MUMmer3.23)
bbmap 37.57

metaSPAdes 3.11

prodigal 2.6.1

diamond

VirSorter v2

VirFinder

CAT

BUSCO

Viral protein families (VPFs)

hmmmr
blast 2.4.0+

IMG/VR v4
Viral Refseq v96

vConTACT2
minced
tRNA-scan
MArVD

WisH

MCL

bowtie2
coverM
bedtools
GTDB-Tk v1.1
vegan (R package)

maps (R package)

pheatmap (R package)

Kurtz et al., 2004

https://jgi.doe.gov/data-and-
tools/bbtools/

Nurk et al., 2017

Hyatt et al., 2010
Buchfink et al., 2014
Roux et al., 2015

Ren et al., 2017
Cambuy et al., 2016
Simao et al., 2015
Paez-Espino et al., 2017

Finn et al., 2015

ftp://ftp.ncbi.nim.nih.gov/blast/
executables/blast+/

Paez-Espino et al., 2017

https://ftp.ncbi.nim.nih.gov/
refseqg/release/viral/

Bin Jang et al., 2019

Bland et al., 2007

Lowe and Eddy, 1997

Vik et al., 2017

Galiez et al., 2017

Enright et al., 2002

Langmead and Salzberg, 2012
https://github.com/wwood/CoverM
Quinlan and Hall, 2010

Parks et al., 2020

Dixon, 2003

https://cran.r-project.org/web/
packages/maps/index.html
https://cran.r-project.org/web/
packages/pheatmap/index.html
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https://sourceforge.net/projects/mummer/
https://jgi.doe.gov/data-and-tools/bbtools/

https://github.com/ablab/spades/releases
https://github.com/hyattpd/Prodigal
https://github.com/bbuchfink/diamond
https://github.com/simroux/VirSorter
https://github.com/jessieren/VirFinder
https://github.com/dutilh/CAT
https://busco.ezlab.org/

http://portal.nersc.gov/dna/microbial/
prokpubs/EarthVirome_DP/final_list.hmms

http://www.hmmer.org/

ftp://ftp.ncbi.nim.nih.gov/blast/
executables/blast+/

https://img.jgi.doe.gov/cgi-bin/vr/main.cgi
https://ftp.ncbi.nim.nih.gov/refseq/release/viral/

https://bitbucket.org/MAVERICLab/vcontact2
https://github.com/ctSkennerton/minced
http://lowelab.ucsc.edu/tRNAscan-SE/
https://bitbucket.org/MAVERICLab/marvd
https://github.com/soedinglab/WIsH
https://micans.org/mcl/
https://github.com/BenLangmead/bowtie2
https://github.com/wwood/CoverM
https://github.com/arg5x/bedtools2
https://github.com/Ecogenomics/GTDBTk
https://cran.r-project.org/web/packages/
vegan/index.html
https://cran.r-project.org/web/packages/
maps/index.html
https://cran.r-project.org/web/packages/
pheatmap/index.html
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

SpiecEasi (R package) https://www.rdocumentation.org/ https://www.rdocumentation.org/packages/
packages/SpiecEasi/versions/0.1.4 SpiecEasi/versions/0.1.4

igragh (R package) https://cran.r-project.org/web/ https://cran.r-project.org/web/packages/igraph/
packages/igraph/

ggplot2 (R package) https://cran.r-project.org/web/ https://cran.r-project.org/web/packages/
packages/ggplot2/index.html ggplot2/index.html

ggpubr (R package) https://cran.r-project.org/web/ https://cran.r-project.org/web/packages/
packages/ggpubr/index.html ggpubr/index.html

gtools (R package) https://cran.r-project.org/web/ https://cran.r-project.org/web/packages/
packages/gtools/index.html gtools/index.html

biomod2 (R package) https://cran.r-project.org/web/ https://cran.r-project.org/web/packages/
packages/biomod2/index.html biomod2/index.html

BiodiveristyR (R package) https://cran.r-project.org/web/ https://cran.r-project.org/web/packages/
packages/BiodiversityR/index.html BiodiversityR/index.html

Analyses scripts and input data (per Figure) This paper https://bitbucket.org/MAVERICLab/GVD

RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the corresponding contact, Matthew Sul-
livan (sullivan.948@osu.edu).

Materials Availability

Gut virome database (GVD) studies were selected by doing a thorough and manually curated search of the Web of Science Core
Collection of Thomson Reuters for studies looking at gut viruses published until October 2019. All studies that used next-generation
sequencing and looked for viruses within the gut microbiome were selected to be part of GVD (see full list of studies in Table S1).
Additionally, we were given access to the reads of one study that is unpublished (unpublished data) and are available upon
request. Lastly, we used the reads from another gut virome study not included in GVD ((Clooney et al., 2019); SRA: PRUNA552463).

Data and Code Availability

Scripts used in this manuscript are available on the Sullivan laboratory bitbucket under ‘gvd’ (https://bitbucket.org/MAVERICLab/
gvd/). All raw reads are available through SRA, iVirus, or MG-RAST using the identifiers listed in Table S1. GVD viral populations
and all IV databases per study can be downloaded directly from iVirus through the following DOI link: https://doi.org/10.25739/
12sg-k039.

METHOD DETAILS

Viral Contig Assembly and Identification

Previously published GVD reads and their associated metadata were downloaded from their respective hosting databases (e.g.
SRA, iVirus, or MG-RAST). The reads for one study were given to us prior to publication (unpublished data). Each individual
downloaded library was counted as a metagenome and processed independently, with the exception of four studies that were pre-
viously processed in the lab and were pooled per individual for the assembly process (Chehoud et al 2016, Lim et al., 2015, Minot
et al., 2013, Zhao et al., 2017) based on the knowledge that the gut virome is fairly consistent throughout time (Minot et al., 2013).
Reads were cleaned by filtering for quality, trimming, and removing adaptors and ¢x174 reads using bbduk (ktrim=r
k=23 mink=11 hdist=1) and removing the reads that mapped to the human genome using bbmap (minid=0.95 maxindel=3
bwr=0.16 bw=12 quickmatch fast minhits=2) from the bbmap suite (Bushnell, 2015). All references to the number of base pairs
sequenced is based on the cleaned, quality-controlled reads. A global map showing the number of studies originating from each
country was created using the R packages ‘rworldmap.’ In total, there were 2,697 metagenomes from 1,986 individuals across 32
studies.

Reads were then assembled using metaSPAdes 3.11.1 (Nurk et al., 2017), due to its performance in sensitivity analyses
(Roux et al., 2017; Sutton et al., 2019) and assembly of large-scale virome datasets (Guerin et al., 2018; Paez-Espino et al., 2016).
Following assembly, contigs >1.5kb were piped through VirSorter (Roux et al., 2015) and VirFinder (Ren et al., 2017) and those
that mapped to the human, cat or dog genomes were removed, as well as known spike-in contaminants (lactococcal phage Q33
and coliphage Qp) from the Shkoporov et al. 2018 and Shkoporov et al. 2019 studies. Contigs >5kb or >1.5kb and circular that
were sorted as VirSorter categories 1-6 and/or VirFinder score >0.7 and p <0.05 were pulled for further investigation. Of these
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contigs, those sorted as VirSorter categories 1 and 2, VirFinder score >0.9 and p <0.05 or were identified as viral by both VirSorter
(categories 1-6) and VirFinder (score >0.7 and p <0.05) were classified as viral. The remaining contigs were run through CAT (Cam-
buy et al., 2016) and those with <40% (based on an average gene size of 1000) of the contig classified as bacterial, archaeal, or eu-
karyotic were considered viral contigs. Contigs > 5kb or >1.5kb and circular that were classified as eukaryotic viral contigs by CAT
were also considered viral contigs. In total, 57,605 putative viral contigs were identified.

Assessing Potential False Positives and Dereplication

All putative viral contigs were then assessed to determine whether they could be a bacterial false positive by the level of bacterial
and viral gene enrichment in each contig. Assessing whether a putative viral contig could be bacterial is extremely hard given that
viruses often pick up their host genes, even ribosomal proteins (Mizuno et al., 2019). Further, bacterial genomes also pick up phage
genomes and genes (e.g., intact and degraded prophages). Thus, a BLAST search of a viral contig against a database of all bacterial
proteins would undeniably result in hits. To limit this problem, we chose to assess the level of bacterial gene enrichment using the
number of hits to bacterial universal single-copy orthologs (i.e., BUSCO; (Waterhouse et al., 2017)) because these genes are highly
conserved and the more of these genes present, the more likely it is bacterial. We used hmmsearch (Finn et al., 2011) to search
the 148 BUSCO gene HMMs and then used the BUSCO provided HMM score cut-offs to filter our results for “hits.” A hit was defined
by an e < 0.05 and a score > scores cut-offs identified by BUSCO. Because some of these genes could still be present in viruses
(Mizuno et al., 2019), we wanted a way to establish a level of BUSCO genes that was “acceptable” for a viral genome. In order to
establish this acceptable baseline, we assessed the number of BUSCO genes present within prokaryotic viral genomes in Viral Re-
fSeq v96, which are genomes that are derived from viral isolates. Because most of the putative viral genomes within GVD are not full
genomes, we wanted to know the rate of BUSCO hits per total number of genes in each Viral RefSeq genome (BUSCO ratio). This
established a range of BUSCO ratios values of 0-0.067 that were derived from known virus genomes, and so were considered
‘acceptable’. We then assessed the BUSCO ratios values for all GVD putative viral contigs and compared it to the Viral RefSeq
BUSCO ratio values (see Table S2). To assess the level of viral gene enrichment, an hmmsearch of all GVD viral contigs against
the curated viral protein family modules (VPFs) (Paez-Espino et al., 2017) was performed with hits being defined as any matches
with an e-value < 0.05. The number of VPF hits are available in Table S2. To remove potential false positives and decontaminate
the set of GVD viral contigs, only the GVD contigs that had a BUSCO ratio < 0.067 or had a BUSCO ratio > 0.067 and at least 3
VFP hits were kept in the remaining database.

The remaining GVD viral contigs that were from known ssDNA or RNA viral families using CAT were grouped into populations if
they shared >95% nucleotide identity across 100% of the genome. Because there are no benchmarked metagenomic population
boundaries for ssDNA and RNA viral families, we chose to not use stringent dereplication. All other contigs were considered double-
stranded DNA and were grouped into populations if they shared >95% nucleotide identity across >70% of the genome (sensu
(Brum et al., 2015b)) using nucmer (Kurtz et al., 2004). All the viral contigs that were assembled were dereplicated per study to create
the individual virome (IV) databases and across all of GVD (see Figure S2A and Table S6). For GVD, this resulted in 33,242 total viral
populations found in GVD (see Table S2 for VirSorter, VirFinder, and CAT results), of which 15,330 were >10 kb in length.

Viral Taxonomy

For each viral population, ORFs were called using Prodigal (Hyatt et al., 2010) and the resulting protein sequences were used as input
for vConTACT2 (Bin Jang et al., 2019) and for BLASTp. Double-stranded DNA viral populations represented by contigs >10kb were
clustered with Viral RefSeq release 88 viral genomes using vConTACT2. Those that clustered with a virus from RefSeq based on
amino acid homology based on DIAMOND (Buchfink et al., 2014) alignments were able to be assigned to a known viral taxonomic
genera. The gene-sharing network was processed using igraph’s python package. After the initial import, networks were cleaned to
remove duplicate edges, and all VCs with fewer than 5 members were discarded. Afterwards, the network layout was calculated us-
ing the Fruchterman-Reingold algorithm, with RefSeq phage references genomes (red nodes in the network) having a fixed position
based on their positions originally published in the initial vConTACT2 paper (Bin Jang et al., 2019). For viral dsDNA populations that
could not be assigned taxonomy or were <10kb, family level taxonomy was assigned using a majority-rules approach, where if >50%
of a genome’s proteins were assigned to the same viral family using a BLASTp bitscore >50 with a Viral RefSeq virus, it was consid-
ered part of that viral family (see Table S2 for family-level taxonomy). For eukaryotic, ssDNA and RNA viruses, CAT was used to assign
the viral family (see Table S2 for family-level taxonomy).

Identifying Temperate Phages across Datasets

VIBRANT (Kieft et al., 2019) was run using its default settings on the GVD, Global Oceans Viromes 2 (Gregory et al., 2019a) and Iso-
Genie (Emerson et al., 2018; Trubl et al., 2018) viral populations. The viruses identified as lysogenic were pulled as the detected
temperate phages across the different datasets.

Virus-Host Predictions

Microbial hosts for the GVD viral populations were predicted using a variety of bioinformatic methods that include viral exact matches
(or close similarity) to (i) host CRISPR-spacers, (ii) integrated prophages in host genomes, (iii) host tRNA genes, and (iv) host k-mer
signatures calculated by WisH (Galiez et al., 2017). Two host databases were used to establish these virus-host linkages: (i) 239,583
assembled prokaryotic genomes from Refseq (downloaded March 2020) which were employed for the first three bioinformatic
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approaches above, and (ii) 4644 species-level prokaryotic genomes from the Unified Human Gastrointestinal Genome (UHGG) cata-
logue (Almeida et al., 2020) which were employed for all of the four bioinformatic approaches. All genomes across the two databases
were taxonomically annotated using the Genome Taxonomy Database (GTDB) taxonomy system (Parks et al., 2020) either by the
curators of the two databases (UHGG and GTDB) or by us (using GTDB-Tk v1.1 in the “classify_wf” mode). CRISPR spacers
were predicted from the host genomes with MinCED (Bland et al., 2007) using the “-minNR 2” parameter (https://github.com/
ctSkennerton/minced) and a BLASTn was used to assess matches between the CRISPR spacers and viral populations in GVD.
The number of exact spacer matches to the viral genome were recorded for each viral population-host pair along with the cases
where there is a single base difference at the spacer end when aligned against the viral genome. We then assigned scores for all
the virus-host pairs so that multiple spacer matches would score higher (perfect score) than a single spacer exact match (high score)
than a single spacer with a base difference at its end (intermediate score). For prophage blasts, a BLASTn (-task megablast) of the
viral population against the two databases was performed. A microbial genome with >2500bp regions of their genome matching at
90% ID with a viral population genome were kept for further consideration (see Roux et al., 2016). These matches were then further
filtered by both viral contig coverage (requiring at least 30% viral coverage) and host contig coverage (requiring at least 30% of the
host contig to be outside the prophage region alignment to avoid mis-binned viral fragments in host metagenome assembled ge-
nomes). Finally, the remaining matches were scored based on viral contig coverage so that 90% coverage would score higher (per-
fect score) than 75% (high score) than 50% (intermediate score) than 30% (low score). Viral and host tRNA genes were predicted
using tRNA-scan (Lowe and Eddy, 1997) (using the general and bacterial/archeal models, respectively) and then a BLASTn was per-
formed between the viral and bacterial tRNA genes. Viral tRNA genes were also searched with BLASTn against the tRNA sequences
from the Earth virome dataset (Paez-Espino et al., 2016) and all the promiscuous tRNAs were removed from further analyses. The
tRNA matches between the viruses and the hosts in our dataset were then scored so that an exact match would score higher
(high score) than a host tRNA with a single base difference (intermediate score) than a host tRNA with two bases difference (low
score). Lastly, WiIsH was used to predict hosts after masking tRNA sequences on the viral genomes to improve performance (Galiez
etal., 2017). Viral Refseq was used as a decoy database after conservatively excluding viruses that are known to infect the genus of a
host under prediction at any given instance. For each viral population, the predicted host with the lowest p was kept for further inves-
tigation. We then assigned these linkages scores so that the lower the p, the higher the score, with a p of zero given a (high score) and
a p of 1e-05 given an (intermediate score). In order to conservatively show family-level host assignments here, we chose to only
include predictions with perfect and high scores. Note that perfect scores were only given to CRISPR and prophage matches to allow
them priority host assignment over WisH and tRNA results. Viruses with putative archaeal hosts were also predicted using MarVD (Vik
et al., 2017). Viruses with predicted eukaryotic hosts were assigned based on their assigned taxonomic viral family.

Detecting Viral Populations and Calculating Their Raw Abundances per Each Assembled Metagenome or Assembled
Pooled Read Set

To calculate the raw abundances of the different viral populations in each sample, reads from each GVD metagenome or pooled read
sets for the four previously processed studies (Chehoud et al 2016, Lim et al., 2015, Minot et al., 2013, Zhao et al., 2017) were non-
deterministically mapped to the GVD viral populations using bowtie2 (Langmead and Salzberg, 2012). CoverM (https://github.com/
wwood/CoverM) was used to remove reads that mapped at <95% nucleotide identity to the contigs, bedtools genomecov (Quinlan
and Hall, 2010) was used to determine how many positions across each genome were covered by reads, and custom Perl scripts
were used to further filter out contigs without enough coverage across the length of the contig. All contigs <5kb in length with
>70% of the contig covered were considered detected in the sample. Contigs >5 kb in length with >5 kb in length covered
were also considered detected in the sample (Gregory et al., 2019a). CoverM was used to calculate the average read depth
(‘tpmean’- i.e. mean minus the top and bottom 5% depths) across each detected contig. The average read depth was considered
the raw abundance of each viral population in each study.

Comparisons to IMG/VR, Viral RefSeq v96, and Individual Virome Databases

The latest IMG/VR release (v4, July 2018) was downloaded, and included all viral contigs, not dereplicated into populations or vOTUs.
All of the viral contigs in GVD, Viral Refseq v96, and individual virome databases are dereplicated at the population level. In order to
make IMG/VR comparable to GVD, Viral Refseq and individual virome databases, we needed to dereplicate the IMG/VR database.
IMG/VR v4 is composed of 760,453 contigs. Because the database is so large, we first used BLASTn to compare homology between
all IMG/VR contigs using a word size = 100. The BLASTn results were then used to cluster the genomes using MCL (Enright et al.,
2002) and the clustering similarity graphs encoded in BLAST methodology (https://micans.org/mcl/). The clustered genomes based
on MCL clustering were then dereplicated if they shared >95% nucleotide identity across >70% of the genome (sensu (Brum et al.,
2015b)) using nucmer. In total, all of the IMG/VR viral contigs were dereplicated into 359,826 viral populations. GVD metagenomes
were then mapped to this IMG/VR human gut viral population database, Viral RefSeq v96, and their respective IV databases for each
individual study in GVD. The raw abundances of the different IMG/VR, Viral RefSeq, and IV viral populations in each sample were
calculated the same way as described in the previous section. The total number of viral populations detected per sample per study
was calculated using the ‘vegan’ package (Dixon, 2003) in R. These values were then plotted and comparative statistics were gener-
ated using the ‘ggboxplot’ function from the ‘ggpubr’ package in R. Importantly, ggboxplot plots the median and quartiles and cal-
culates Mann-Whitney U tests between groupings. Fold-change differences were calculated using the ‘gtools’ package in R.
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The number of unique reads mapped from each GVD sample to GVD, IMG/VR v4,Viral Refseq v96, and IV databases was calcu-
lated by counting the number of reads mapped following removal of reads mapped at <95% nucleotide identity. The total number of
reads mapped per sample using the different databases were then plotted and comparative statistics were generated using the
‘ggboxplot’ function from the ‘ggpubr’ package in R.

To test if GVD was also useful for gut virome studies not included in GVD, reads were also downloaded from a recent gut virome
study not included in GVD (Clooney et al., 2019; SRA PRINA552463), processed, and viral contigs identified and assessed for false-
positives using the same method described above. In total, we identified 1,299 viral populations. The number of viral populations
detected using GVD, IMG/VR, Viral RefSeq, and the Clooney et al. 2019 individual virome database using the same methods
described above.

Detecting Viral Populations and Calculating Their Raw Abundances by Metagenome

To calculate the raw abundances of the different viral populations in each sample, reads from each GVD metagenome included the
unpooled read sets (Chehoud et al 2016, Lim et al., 2015, Minot et al., 2013, Zhao et al., 2017) were non-deterministically mapped to
the GVD viral populations using bowtie2 and processed as detailed above in Detecting viral populations and calculating their raw
abundances per each assembled metagenome or assembled pooled read set. The raw abundances for each GVD viral population
in each metagenome are available in Table S4.

Assessing VLP-Enriched and Bulk Metagenomes

Metagenomes were divided into VLP-enriched (VLP) and bulk metagenomes (information per metagenome can be found in Table S5).
To assess whether there was a difference between viral recovery in VLP versus bulk metagenomes, the number of assembled contigs
per study was divided by the total number of clean base pairs sequenced in the study. For the Shkoporov et al., 2019 study, the viral
contigs assembled from the VLP and bulk were kept separate and divided by the respective number of base pairs sequenced. The
VLP and bulk studies were then plotted in boxplots and comparative statistics were performed using the ‘ggboxplot’ function from
the ‘ggpubr’ package in R. Of the VLP studies, the number of viral contigs assembled per base pair sequenced per study with and
without MDA-treatment and the different VLP-enrichment strategies were also plotted in boxplots and comparative statistics were
performed using the ‘ggboxplot’ function from the ‘ggpubr’ package in R. The median contig length per study between VLP and bulk
and across the different VLP-enrichment strategies were also plotted in boxplots and comparative statistics were performed using
the ‘ggboxplot’ function from the ‘ggpubr’ package in R. To assess the impact of sequencing depth on viral contig assembly, a scat-
terplot of the number of assembled contigs per study were plotted against the total number of clean sequenced base pairs per study
and linear regression run using the package ‘ggplot2’ in R. This was repeated in solely the VLP metagenome studies and solely the
bulk metagenome studies.

To assess whether there was a difference between viral population detection in VLP versus bulk metagenomes, the total number of
viral populations detected per base pair sequenced was calculated for each metagenome and plotted in boxplots and statistically
compared by VLP or bulk metagenome status using the ‘ggboxplot’ function from the ‘ggpubr’ package in R. For the Shkoporov
et al., 2019 study, one time point (T8) of the ten individuals in the study was processed and sequenced using both VLP-enrichment
and bulk methods. There were two VLP metagenomes and one bulk metagenome per individual for that time point. The number of
viral contigs assembled per base pair sequenced and the median contig lengths per individual were also plotted in boxplots and
comparative statistics were performed using the ‘ggboxplot’ function from the ‘ggpubr’ package in R. The total number of viral pop-
ulations detected per base pair sequenced was calculated and, for the VLP samples, the values were averaged. The averaged VLP
value and the bulk metagenome were then plotted using ‘ggplot2.’

Clustering Studies Based on Shared Viral Populations

To test how studies clustered together, the viral population presence-absence data from individuals (or pooled read sets) within a
study were merged. In Study 1, individual A had viral populations 1, 2, 4, 5 and individual B had viral populations 3, then Study 1
had viral populations 1, 2, 3, 4, and 5. The different studies were then assessed for the number of shared viral populations that
were present in both studies. These values were then displayed and hierarchically clustered using the R ‘pheatmap’ package.
The resulting hierarchical clusters were used as guides to divide the studies into four groups (I-IV). The number of shared viral pop-
ulations in metagenomes within each study in each group were clustered using the R ‘SPIEC-EASI’ package (method="mb’,lamb-
da.min.ratio=1e-2,nlambda=20,icov.select.params=list(rep.num=50; Kurtz et al., 2015) to infer associations between samples
based on the shared number of viral populations. Each network for each group was plotted using the R ‘igraph’ package.

Identifying crAssphage Populations

CrAssphage viral populations in GVD were identified by using BLASTn against the crAssphage genomes identified in (Guerin et al.,
2018). Those with >80% ID across >50% the length of the GVD viral genome were classified as crAssphage. In total, there were 70
unique crAssphage populations.

Core Viral Population Analyses
To explore if there were any core viral populations, the abundance table was turned into a binary presence-absence matrix using the
‘biomod2’ package in R. The number of GVD samples that each viral population was detected within was then calculated using R and
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divided by the total number (2,697) of metagenomes to get the percentage of metagenomic samples. Each viral population’s percent-
age was plotted in hive plot using ‘geom_curve’ in ggplot2 (Ginestet, 2011). CrAssphage populations were replotted on top of the all
viral populations to differentiate them. The number of viral populations that were present across different percentages were calcu-
lated using R and their distributions plotted using ‘geom_histogram’ in ggplot2.

Assessing the Impact of Age on Viral Diversity in the Gut Virome

Because no single study in GVD has samples that spanned all of the human life stages (infancy, childhood, adulthood, and
senescence), we needed to combine samples from multiple different studies. Due to unequal sequencing and MDA, which
skews population abundances, across GVD, we chose to use the number of viral populations per clean base pair sequenced
as a proxy for viral richness. If multiple metagenomes were collected for a single individual the number of viral populations per
base pair sequenced per metagenome was averaged. We the ran a Kruskal-Wallis test in R between viral populations per base
pair sequenced and study which shows revealed that study origin was driving significant differences in viral richness values.
Next, to visualize potential study outliers that could be driving this correlation, the number of viral populations per base
pair sequenced per study was plotted using the ‘ggboxplot’ function from the ‘ggpubr’ package in R. The 75% and 25% quan-
tiles number of viral populations per base pair sequenced across all metagenomes were calculated using base R and plotted
over the boxplots. Studies with medians that fell outside of 25-75% quantile range were considered outliers. To assess what
was driving the outlier status of these studies, we tested all the parameters that we had information across all the studies
including sequencing platform, enrichment type (bulk or VLP), and MDA-treatment. First, we sequentially and additively tested
the impact of sequencing platform, enrichment type (bulk or VLP), and MDA using comparative statistics from the ‘ggpubr’
package in R and plotted the results using ‘ggboxplot’ function in the same package in R. The 454, bulk, and non-MDA studies
were removed as outliers.

Next, we assessed what could be driving potential confounders among individuals in these remaining studies by testing the impact
of geographic origin (Western or non-Western) and health status (healthy or diseased) on the number of viral populations per base
pair sequenced. Again, comparative statistics were calculated using the ‘ggpubr’ package in R and plotted using the ‘ggboxplot’
function in the same package in R. Because the non-Western, diseased individuals were significantly different, they were removed
as potential confounders for when looking at the impact of age. The remaining individuals represented 151 healthy Western individ-
uals across 11 different studies. The number of viral populations per base pair sequenced for these remaining individuals were plotted
by study using the ‘ggboxplot’ function from the ‘ggpubr’ package in R. The 75% and 25% quantiles number of viral populations per
base pair sequenced across all metagenomes were calculated using base R and plotted over the boxplots. All the studies now had
medians that fell within the 25-75% quantile range and were kept for further analyses. A final Kruskal-Wallis test in R revealed that
study origin was no longer significantly driving differences in viral richness values.

The remaining individuals were partitioned into life stages based on age: infancy (0-3 years old), childhood (3-18 years old),
adulthood (18-65 years old), and senescence (65+ years old). In total, there were 28 infants, 12 children, 95 adults, and 20
elderly individuals. We next removed outlier individuals per life stage by removing the individuals that had number of viral
populations per base pair sequenced that was greater than 1.5 times the interquartile range. After removal of these life stage
outliers, there were 27 infants, 11 children, 93 adults, and 20 elderly individuals. We also were curious about how different
viral types (bacteriophage and eukaryotic viruses) and different viral families including crAssphage varied across the life stages.
Using the taxonomy as a guide, we pulled out the total number of each of the aforementioned categories per individual
and divided by the total base pair sequenced. We plotted the data two ways. The first way was using boxplots to statistically
assess differences between the life stages using the ‘ggboxplot’ function from the ‘ggpubr’ package in R. The second way was
using Loess smoothing. To perform the Loess smoothing, each life stage was counted as a unit of 1, so infancy was 1, child-
hood 2, adulthood 3, and senescence 4. The number of viral populations per base pair sequenced per life stage was then
plotted using Loess smoothing (span = 1) in the ‘ggplot2’ package in R. The Loess curves were then put on the same axis
from their maximum to the minimum value in order to better visualize each curve and compare trends in Figure 7A. The binary
presence-absence data for the crAssphage populations across all 151 healthy Western individuals were plotted using pheat-
map in R. Lastly, because we also had a single study that had non-Western, Chinese adults and elderly individuals (Ma
et al., 2018), we also statistically evaluated if they were different and plotted the number of viral populations per base pair
sequenced using the ‘ggboxplot’ function from the ‘ggpubr’ package in R.

Removing Potential Contaminants and Validating the Impact of Age on Viral Diversity in the Gut Virome

Given that only 1 of the 32 studies within GVD sequenced and publicly provided the data for blank, negative controls, removing
potential contaminants was difficult. Contaminants by definition should be in low abundance in a study and most likely are found
only in on study. Thus, to identify potential contaminant viral populations, we took a very liberal approach (i.e. we identified and
removed all populations that had the potential to be contamination). We first normalized the raw abundances per study using
the number of base pairs sequenced. Thus, samples were scaled to the sample with the most base pairs sequenced. We then
ran rank abundance curves on all the detected GVD viral populations per study using the BiodiveristyR package in R. Populations
in the rare-tail of the rank abundance curves (proportion < 0.1) were putatively considered contaminants. These initial putative
contaminants per study were checked to see if they were detected in any other study. If they were detected, they were removed
from the contaminant list. All other rare-tail viral populations were considered contamination. In total, there were 19,551 putative
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contaminant viral populations using this liberal approach. These viral populations were removed from further analyses and the
same analyses described in the methods section “Assessing the Impact of Age on Viral Diversity in the Gut Virome” was repeated
with the putative contaminants removed.

QUANTIFICATION AND STATISTICAL ANALYSES

Please refer to figure legends and Method Details for full details on statistical analysis.
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